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During the past year, the Principal Investigator (PI) has worked closely with Spitzer Space
Telescope’s Infrared Array Camera (IRAC) instrument team to demonstrate that his AISR-funded
MATPHOT algorithm [1] for precision stellar photometry and astrometry can yield an improve-
ment in the precision of stellar photomety obtained from IRAC Channel 1 (Ch1) observations of
more than 100% over the best results obtained with aperture photometry and the state-of-the-art
calibration procedures recommended in the Infrared Array Camera (IRAC) Data Handbook[2].

The PI presented the paper Innovative image analysis software as a technology driver for ad-
vances in space telescope design [3] on Wednesday May 31, 2006 at Space Telescopes and Instru-
mentation I: Optical, Infrared, and Millimeter (Conference 6265) of the SPIE International Symposium
Astronomical Telescopes and Instrumentation 2006 (SPIE-Orlando) which was held in Orlando, Florida
on May 24-31, 2006. In that paper, the presented simulations which indicated that by carefully
modeling the image formation process within the IRAC Ch1 instrument using the MATPHOT al-
gorithm, it might be possible to significantly improve the precision of IRAC Ch1 stellar photometry
over the state-of-the-art reductions available at that time.

The PI presented the paper Analysis of K-band imaging of the wide binary system σ CrB with
the Lick Observatory NGS AO system [4] on Thursday May 25, 2006 at SPIE-Orlando. In that
paper, Mighell, Christou, and Drummond presented a MATPHOT-based analysis of near-infrared
adaptive-optics observations of the astrometric calibrator σ Corona Borealis and showed that one
can achieve excellent 2–3 milliarcsecond relative astrometry with short (0.057–10 sec) good-Strehl-
ratio (reaching 50%) adaptive-optic observations in the K-band with a Brackett-γ filter (λ0 = 2.167
µm; δλ = 0.020 µm).

The PI was the second author of the paper Strehl ratio and image sharpness for Adaptive Op-
tics [5] which was presented on Monday May 29, 2006 at Advances in Adaptive Optics II (Conference
6272) at SPIE-Orlando. In that paper, Christou, Mighell, and Makidon present a detailed analysis of
the relation between the Strehl ratio and various image sharpness metrics first proposed by Muller
and Buffington [6].

Current infrared detector technology can produce imagers with non-uniform intrapixel response
functions. Cameras based on such detectors can have large systematic errors in the measurement
of the total stellar flux. Although this problem can be mitigated by oversampling the stellar
image, many near-infrared cameras are undersampled in order to achieve a large field of view. The
combination of undersampling stellar images with non-uniform detectors is currently diminishing
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some of the potential science return of some infrared imagers onboard the Hubble Space Telescope
and the Spitzer Space Telescope. Although the recorded flux and position of point sources is
corrupted by using detectors with non-uniform intrapixel response functions, it is still possible
to achieve excellent stellar photometry and astrometry — if the image formation process inside
the detector is accurately modeled. A new analysis algorithm called the Lost Flux Method
was developed by the PI and used to demonstrate how the precision of stellar photometry from
an existing space-based near-infrared camera with a lossy detector can be significantly improved.
Multiple observations of a single bright isolated star obtained with Channel 1 of the Spitzer Space
Telescope Infrared Array Camera (IRAC) instrument were analyzed with the Lost Flux Method
which yielded an improvement in photometric precision of more than 100% over the best results
obtained with aperture photometry.

The Lost Flux Method was first presented to the space science community in the paper Improving
the Precision of Near-Infrared Stellar Photometry by Modeling the Image Formation Process within
a Lossy Detector [7] which was presented on Tuesday September 12, 2006 at the 2006 Advanced
Maui Optical and Space Surveillance (AMOS) Technologies Conference which was held in Wailea,
Maui, Hawaii on September 10-14, 2006.

The PI presented the paper The Lost Flux Method: A New Algorithm for Improving the Precision
of Space-Based Near-Infrared Stellar Photometry with Lossy Detectors [8] on Monday October 16,
2007 at the Astronomical Data Analysis Software and Systems XVI which was held in Tucson, Arizona
on October 15-18, 2006.

The PI presented poster # 164.14 The Lost Flux Method: A New Algorithm for Improving the
Precision of Space-Based Near-Infrared Stellar Photometry with Lossy Detectors [9] on Tuesday
January 9, 2007 at the 209th meeting of the American Astronomical Society which was held at
Seattle, WA on January 6-11, 2007.

The PI gave an invited hour-long lecture on the topic Precision Stellar Photometry and Astrom-
etry using Discrete Point Spread Functions: Theory and Practice at the Department of Physics and
Astronomy of the University of New Mexico, Albuquerque on December 1, 2006. This presenta-
tion discussed the theoretical and practical limits of precision stellar photometry and astrometry
based on astrophysics and information theory. A PDF version of this PowerPoint presentation was
submitted for possibly publication on the AISR website at http://aisrp.nasa.gov/; it is also
available at http://www.noao.edu/staff/mighell/2006DEC01/presentation.pdf.

The PI has continued his very productive collaboration with Dr. Volodymyr Kindratenko, a Se-
nior Research Scientist at the National Center for Supercomputing Applications (NCSA) at the
University of Illinois at Urbana-Champaign. The article Code Partitioning for Reconfigurable
High-Performance Computing: A Case Study [10] describes Dr. Kinratenko’s efforts to port of
MATPHOT’s 21-pixel wide damped sinc interpolator (Equation 49 of [1]) to the FPGAs (Field
Programmable Gate Arrays) of the SRC-6 MAPstation.
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Innovative image analysis software as a technology driver for advances in space telescope design,
Mighell, K. J. 2006, in Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter, edited

by J. C. Mather, H. A. MacEwen, and M. W. de Graauw, Proceedings of SPIE, Vol. 6265, 12 pages

Analysis of K-band imaging of the wide binary system σ CrB with the Lick Observatory NGS AO
system, Mighell, K. J., Christou, J. C., & Drummond, J. D. 2006, in Advances in Adaptive Optics

II, edited by B. L. Ellerbroek and D. B. Calia, Proceedings of SPIE, Vol. 6272, 6 pages

Strehl ratio and image sharpness for Adaptive Optics, Christou, J. C., Mighell, K. J., & Makidon,
R. B. 2006, in Advances in Adaptive Optics II, edited by B. L. Ellerbroek and D. B. Calia, Proceedings

of SPIE, Vol. 6272, 12 pages

Improving the Precision of Near-Infrared Stellar Photometry by Modeling the Image Formation
Process within a Lossy Detector, Mighell, K. J. 2006, Proceedings of the 2006 Advanced Maui
Optical and Space Surveillance (AMOS) Technologies Conference which was held in Wailea, Maui,
Hawaii on September 10-14, 2006, pages 201-208

The Lost Flux Method: A New Algorithm for Improving the Precision of Space-Based Near-Infrared
Stellar Photometry with Lossy Detectors, Mighell, K. J. 2006, ASP Conference Series: Astro-
nomical Data Analysis Software and Systems XVI, edited by R. Shaw, F. Hill and D. Bell, 4 pages
(in press)

The Lost Flux Method: A New Algorithm for Improving the Precision of Space-Based Near-Infrared
Stellar Photometry with Lossy Detectors, Mighell, K. J. 2006, Bulletin of the American Astro-
nomical Society, Vol. 38, page 1132 (poster # 164.14 at the 209th meeting of the AAS at Seattle,
WA on 01/06-11/2007).
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Innovative Image Analysis Software as a Technology Driver
for Advances in Space Telescope Design

Kenneth J. Mighella

aNational Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719, U.S.A.

ABSTRACT

Innovative image analysis software has the potential to act as a technology driver for advancing the state-of-
the-art in the design of space telescopes and space-based instrumentation. Total mission costs can sometimes
be significantly reduced by using innovative compact optical designs that create ugly Point Spread Functions.
Most traditional astronomical image analysis techniques, like precision stellar photometry and astrometry, were
developed for the analysis of ground-based image data and many photometric reduction codes cleverly take full
advantage of the blurring caused by the Earths atmosphere. Image data from space-based cameras, however,
is typically characterized by having significant amounts of power at high spatial frequencies. Mission designers
have a penchant to approve of optical designs that are undersampled. Although excellent justifications can often
be made for using complex optical designs that have ugly Point Spread Functions (e.g., reduced total mission
cost) or for using detectors that are too big at a given wavelength (e.g., giving a wider field-of-view), the analysis
of resultant image data from these designs is frequently problematical. Reliance upon traditional ground-based
image analysis codes may preclude the use of innovative space-based optical designs if such designs are rejected
during the design review process for the very practical reason that there is no proven way to accurately analyze
the resultant image data. I discuss ongoing research efforts to develop new image analysis algorithms specifically
for space-based cameras that may help NASA and ESA to enhance the scientific returns from future astrophysical
missions while possibly lowering total mission costs.

Keywords: stellar photometry, astrometry, infrared detectors, Spitzer Space Telescope, IRAC, MATPHOT

1. CAN YOU FIT A BANANA?

Since the early 1990s, NASA’s astrophysical mission designers have been challenged by administrators to do more
science with fewer dollars. The “faster-better-cheaper” approach of mission design has lead to many innovative
mission concepts which achieve lower total mission cost at the price of having some distortion in the optical
design of instruments and/or telescopes. One way of compensating for distorted optics is to do more image
processing with clever analysis algorithms.

Technology Readiness Level1 (TRL) enhancement programs at NASA, like the Applied Information Systems
Research (AISR) program of NASA’s Science Mission Directorate, can significantly help NASA’s astrophysical
mission designers by promoting the development of new image processing algorithms from a basic technology
research level (e.g., TRL 1–3) to the point where mission designers can consider using these new image processing
algorithms in future NASA missions (e.g., TRL 5–6). Space-based demonstration of new technologies is clearly
beyond the scope and means of the AISR program, yet AISR can develop new applied information systems
technologies which would be excellent candidates for consideration for use in demonstrator programs like the
New Millennium Program2 (NMP) which tests advanced technology for use in space flight.

One of the early design concepts for the 8-m Next Generation Space Telescope (NGST), currently known as
the 6.5-m James Webb Space Telescope (JWST), had a very elliptical primary mirror in order to fit it into a
4-m diameter launch shroud. John Mather, the NGST Project Scientist, described this concept to me at the
193rd meeting of the American Astronomical Society (AAS) in January 1999 in Austin, Texas. He explained
that one of the problems associated with the elliptical primary mirror design was the fact that the oddly shaped
primary mirror would cause stars to be shaped like bananas. He then asked me: “Can you fit a banana?” I
replied: “Yes.” Since there was as yet no clear consensus within the NGST project in 1999 whether accurate
stellar photometry and astrometry was theoretically and/or practically possible with very complex Point Spread
Functions (PSFs), he replied: “Prove it!”

Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter,
edited by John C. Mather, Howard A. MacEwen, Mattheus W.M. de Graauw,
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Through funding provided by the AISR program, I have met Mather’s challenge by demonstrating that precise
and accurate stellar photometry and astrometry is possible and practical with ugly space-based PSFs which have
high spatial frequencies rarely seen in ground-based astronomy due to the blurring of the Earth’s atmosphere.

Section 2 describes the role of Point Response Functions (PRFs) in the image formation process. An
information-theory based point-source photometric and astrometric performance model which can be used to
measure the measurement efficiency of stellar photometric reduction codes is outlined in Section 3. The key
features of my MATPHOT algorithm, for precision stellar photometry and astrometry with discrete (sampled)
PSFs, are described in Section 4. Problems related to doing astrophysical imaging with ugly (imperfect) detec-
tors with large intrapixel quantum efficiency (QE) variations is presented in Section 5. A practical example is
given in Section 6 where a theoretical analysis indicates that the current 5% stellar photometry precision limit
from Channel 1 of Spitzer Space Telescope’s Infrared Array Camera (IRAC) may be significantly improved in the
near future through better modeling of the image formation process within the detector. Concluding remarks
are given in Section 7.

2. POINT RESPONSE FUNCTIONS

A Point Response Function (PRF), Ψ, is the convolution of a Point Spread Function (PSF), φ, and a Detector
Response Function (DRF), Λ :

Ψ ≡ φ ∗Λ . (1)

The PSF describes the two-dimensional distribution of photons from a star just above the detector. Although
stellar photons are distributed as a point source above the Earth’s atmosphere, a stellar image becomes a two-
dimensional distribution as the stellar photons are scattered by atmospheric turbulence. The blurred stellar
image is then further degraded by passage of the stellar photons through the combined telescope and camera
optical elements (such as mirrors, lenses, apertures, etc.). The PSF is the convolution of all these blurring
effects on the original point-source stellar image. The DRF is a two-dimensional discrete (sampled) function
that describes how the detector electronics convert stellar photons (γ) to electrons (e−) — including such effects
as the diffusion of electrons within the detector substrate or the reflection (absorption) of photons on (in) the
gate structures of the detector electronics.

A perfect DRF gives a PRF that is a sampled version of the PSF:

Ψi ≡
∫ xi+0.5

xi−0.5

∫ yi+0.5

yi−0.5

φ(x, y) dx dy , (2)

where ith pixel (px) of the PRF located at (xi, yi) is the volume integral of the PSF over the area of the ith pixel.
The actual limits of the above volume integral reflect the appropriate mapping transformation of the x and y
coordinates onto the CCD pixel coordinate system.

The sharpness of a PRF is defined as the volume integral of the square of the normalized PRF:

sharpness ≡
+∞∫∫

−∞
Ψ̃

2
dx dy ≡

+∞∫∫

−∞

(
Ψ
V

)2

dx dy , (3)

where V is the volume integral of the PRF, which has a value between one and zero. Physically, sharpness is
a shape parameter which describes the “pointiness” of a PRF; sharpness values range from a maximum of one
(all of the stellar flux is found within a single pixel) to a minimum of zero (a flat stellar image). For example,
cameras that are out of focus have broad PSFs with sharpness values near zero. A normalized Gaussian3 PSF
with a standard deviation of S pixels that has been oversampled with a perfect DRF will have a sharpness value of
1/4πS2 . A critically-sampled normalized Gaussian PRF has a sharpness of 1/(4π) and any PRF with a sharpness
value greater than that value (∼0.0796) can be described as being undersampled. Diffraction limited optics,
theoretically, give sharpness values that decrease (i.e., PSFs become flatter) with increasing photon wavelength
– for a fixed pixel (detector) size. With real astronomical cameras, the value of sharpness frequently depends on
where the center of a star is located within the central CCD pixel of the stellar image. For example, the Hubble
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Space Telescope (HST) WFPC2 Planetary Camera PRF at a wavelength of 200 nm has an observed sharpness
value of 0.084 if the PRF is centered in the middle of a PC pixel or 0.063 if the PRF is centered on a pixel
corner (Table 6.5 of Ref. 4); at 600 nm the observed sharpness values range from 0.066 (pixel-centered) to 0.054
(corner-centered). The Wide-Field Cameras of the HST WFPC2 instrument have pixels which are approximately
half the angular resolution of the PC camera pixels; stellar images on the WF cameras are undersampled and
the observed range of WF camera sharpness values are 0.102–0.120 at 200 nm and 0.098–0.128 at 600 nm.

The effective-background area, β, of a PRF is defined as the reciprocal of the volume integral of the square of
the PRF. Alternatively, the effective-background area (a.k.a. equivalent-noise area5 or effective solid angle ) of
a PRF is equal to the reciprocal of the product of its sharpness and the square of its volume:

β ≡
⎡
⎣

+∞∫∫

−∞
Ψ2 dx dy

⎤
⎦
−1

=
1

V 2 sharpness
. (4)

The effective-background area of a normalized Gaussian PRF is 4πS2 px, where S is the standard deviation in
pixels; a critically-sampled normalized Gaussian PRF has an effective-background area of 4π ≈ 12.57 px. King5

notes that numerical integration of a realistic ground-based stellar profile gives an effective-background area of
30.8S2 instead of the value of 4π S2 for a normalized Gaussian profile.

3. PHOTOMETRIC AND ASTROMETRIC PERFORMANCE MODEL

Consider a CCD observation of single isolated star on a flat sky background. Assuming one already knows
the PRF of the observation at the location of the star, a simple model of the observation would have just two
parameters: the stellar intensity (E) in electrons, and the observed background sky level (B) in electrons. The
observational model for the ith pixel would be

mi ≡ B + EVΨ̃i , (5)

where V is the volume integral of the PRF and Ψ̃i is the value of the ith pixel of the normalized PRF ( Ψ̃i ≡ Ψi/V ).

I have developed a realistic point-source photometric performance model for CCD PSF-fitting stellar pho-
tometric reduction codes.6 The theoretical upper limit for the photometric signal-to-noise ratio (S/N) of CCD
PSF-fitting stellar photometric algorithms is

S/N ≡ E
σE

≈ E√ E
V

+ β
(
1 +

√
β/N

)2 [B + σ2
RON

] , (6)

where β is the effective-background area of the PRF and σRON is the rms CCD readout noise. These approxima-
tions assume, for the sake of simplicity, that any noise contribution due to dark current and quantization noise
is negligible. While these additional noise sources can be added to create an even more realistic performance
model for stellar photometry, the assumption of low dark current and minimal quantization noise is realistic
for state-of-the-art astronomical-grade CCD imagers. This photometric performance model has bright and faint
star limits6 which are the same, respectively, as the bright and faint star Cramér-Rao Lower Bounds for stellar
photometry imaged with a perfect noiseless detector.5,7 The resulting photometric error is approximately

∆mag ≈ 1.0857
S/N

, (7)

where the constant 1.0857 is an approximation for Pogson’s8 ratio a ≡ 5/ ln(100) = 2.5 log(e) .

I have developed a realistic point-source astrometric performance model for CCD PSF-fitting stellar photo-
metric reduction codes.6 The theoretical lower limit of the rms measurement error for the stellar position in the
x coordinate (X ) for a single isolated star on a flat sky is

σX ≈
√

L2

EV

[
1 + 8π

(B + σ2
RON

) L2

EV

]
, (8)
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where

L ≡
√

β V2

4π
=

1√
4π sharpness

(9)

is the critical-sampling scale length of the PRF∗ in pixel units. The rms stellar position measurement error in
the y coordinate (Y) is the same, by symmetry, as for X : σY = σX . The critical-sampling scale length of a
critically-sampled PRF imaged with a perfect detector, be definition, is one pixel; L > 1 indicates that the PRF
is oversampled, while L < 1 indicates that the PRF is undersampled.

This astrometric performance model has bright and faint star limits6 which are the same, respectively, as
the bright and faint star Cramér-Rao Lower Bounds for stellar astrometry of a single isolated Gaussian star on
a flat sky background imaged with a perfect noiseless detector with infinitely small pixels (a.k.a. the photonic
limit).7 The Cramér-Rao Lower Bound for stellar astrometry of a single isolated Gaussian star on a flat sky
background imaged with a perfect noiseless CCD with square pixels9 quickly approaches the photonic limits with
well-sampled observations; undersampled observations will have larger astrometric errors than predicted by the
photonic limits.

4. PHOTOMETRY & ASTROMETRY WITH DISCRETE PSFS

I have developed a C-language implementation10 of my MATPHOT algorithm6,11,12 for precise and accurate
stellar photometry and astrometry with discrete Point Spread Functions (PSFs). The MATPHOT code uses
discrete (sampled) Point Spread Functions consisting of a numerical table represented by a matrix in the form
of a FITS13 image. Discrete PSFs are shifted within an observational model using a 21-pixel-wide damped sinc
function,

f shifted(x0) ≡
10∑

i=−10

f(xi)
sin (π(xi − x0))

π(xi − x0)
exp

(
−
[
xi − x0

3.25

]2)
, (10)

and position partial derivatives are computed using a five-point numerical differentiation formula,

f ′(xi) ≈ 1
12

[f(xi−2) − 8 f(xi−1) + 8 f(xi+1) − f(xi+2)] . (11)

Precise and accurate stellar photometry and astrometry are achieved with undersampled CCD observations by
using supersampled discrete PSFs that are sampled 2, 3, or more times more finely than the observational data.
Although these numerical techniques are not mathematically perfect, they are sufficiently accurate for precision
stellar photometry and astrometry due to photon noise which is present in all astronomical imaging observations.6

The current implementation10 of the MATPHOT algorithm is based on a robust implementation11,14 of the
Levenberg15-Marquardt16 method of nonlinear least-squares minimization. Detailed analysis of simulated Next
Generation Space Telescope (NGST) observations demonstrate that millipixel relative astrometry and millimag
photometric precision is achievable with complicated space-based discrete PSFs.6

A simulated NGST V-band stellar observation with the 8-meter TRW-concept 1.5-micron diffraction-limited
primary mirror is shown in Fig. 1 with the 90%, 50%, 10%, 1%, and 0.1% contours relative to the peak intensity.
The pixel scale is 0.0128 arcsec pixel−1. The original version of this PSF was kindly provided by John Krist
(STScI, now at JPL). The right side of Fig. 1 shows the MATPHOT-based analysis of 10,000 simulated NGST V -
band CCD observations of stars with true flux values between 250 and 106 electrons (photons). Each observation
was simulated with a 2×2 supersampled NGST PSF located near the center of 60×60 pixels on a flat background
of 100 electrons (e−) with a CCD readout noise level of 3 e− pixel−1. The results are plotted using box-and-
whisker plots6 to better display the statistical range of recovered values for photometry and astrometry. Fig.
2 shows similar results for simulated 6.5-m James Webb Space Telescope (JWST) observations with a perfect
one-micron PSF (shown with a log stretch to better display the higher spatial frequencies). The solid curves
in Figs. 1 and 2 show the predicted median performance of the MATPHOT algorithm for these simulations;

∗From the definition of the effective-background area of an oversampled Gaussian PRF with a standard deviation of
S pixels and V<1, βG ≡ 4πS2/V2 , one sees that critical-sampling scale length has been designed to be a proxy for S for
any PRF.
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Figure 1. MATPHOT analysis of 10,000 simulated NGST stellar observations.

Figure 2. MATPHOT analysis of 10,000 simulated JWST stellar observations.

note that the actual median values (central bars in the boxes) lie on top or very near the performance model
prediction. The wide bands in the above photometric (astrometric) error plots show the predicted outlier region
for 2.3σ (3.0σ) to 5.0σ outliers (shown as points above the top whisker in Figs. 1 and 2). Note how well
the theoretical performance model agrees with the actual MATPHOT measurements — even with these very
complicated (simulated) space-based discrete PSFs.

5. UGLY DETECTORS

Current infrared detector technology can produce imagers with non-uniform pixel response functions. Lauer17

reported peak-to-peak variation of 0.39 mag at the J band (F110W) and 0.22 mag at H band (F160W) of the
NIC3 camera of the HST NICMOS instrument. The peak-to-peak variation of 0.2 mag at F160W with NIC3
has been independently verified.18 Significant flux loss due to non-uniform intrapixel pixel response functions is
clearly an observational fact in some existing space-based astronomical cameras.

An experimental version of the MATPHOT demonstrator program, called mpdx,6 was created to simulate
such an IR detector; a pixel was split into 16 subpixels and all the subpixels in the first row and column were
declared to be gate structures with zero efficiency converting photons to electrons and the other nine subpixels
had 100% conversion efficiency. Note that only 56% of the total pixel area was optically active.
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Ten thousand undersampled CCD stellar observations of −15 mag stars (106 electrons) were simulated and
analyzed with mpdx using a 4×4 supersampled version of the simulated V -band NGST PSF described above.

Figure 3. Results of the mpdx experiment with simulated NGST observations.

The optically inactive gate structures of the pixel cause the observed number of electrons in each stellar image
to be significantly less than the number of photons which fell on the detector. The total amount of loss was
dependent on where the center of the star fell within the central pixel of the stellar image. The left side of Fig.
3 shows that stars centered in the middle of the active area of a pixel suffered a ∼40% loss (∆m ≈ 0.56 mag)
while those centered on gate structures lost up to 47% (∆m ≈ 0.69 mag).6

The mean apparent (observed) stellar magnitude for these −15 mag stars was −14.3723 ± 0.0354 mag. The
photometric performance model predicts an rms measurement error of 0.0015 mag for these bright stars. With
an average loss of 44% and an rms measurement error that is more than 23 times larger than expected from
photon statistics, the observed stellar magnitudes were neither precise or accurate (see the left histogram of the
central graph in Fig. 3).

The mean measured stellar magnitude reported by mpdx was −14.9999±0.0015 mag and the mean rms error
estimated by the program was 0.001503 ± 0.000016 mag (see the right histogram of the central graph of Fig.
3). The photometric performance of the experimental version of MATPHOT is fully consistent with theoretical
expectations — which were derived6 for an ideal detector with no intrapixel QE variation.

The experimental version of MATPHOT was able to do an excellent job in recovering the true stellar mag-
nitude of the 10,000 −15 mag stars — despite being presented with a worst-case scenario of undersampled
observations with an ugly PSF imaged on an ugly detector with a very large intrapixel QE variation .6

Non-uniform intrapixel response functions can also affect astrometric (position) measurements. Photons that
are not converted to electrons can cause the apparent intensity weighted centroid of the PRF (i.e., the recorded
stellar image) to be in a different location than the intensity weighted centroid of the PSF (i.e., the photon
distribution function just above the detector). The right graph of Fig. 3 demonstrates this problem; the light grey
(cyan) points show the large systematic astrometric errors of the apparent centroid (intensity weighted mean) of
the stellar image; the black (blue) points show the small random astrometric errors of the mpdx measurements.
In this particular experiment, the Fig. 3 indicates that the apparent position of the stellar image may in fact
be several hundredths of a pixel off from the true location of the PSF – this is a very large systematic error
considering that the expected position error from photon statistics is only 1.7 millipixels.

The experimental version of MATPHOT was able to do an excellent job in recovering the true stellar position
of the 10,000 −15 mag stars — despite the fact that the apparent positions of Point Response Functions were
corrupted by the inactive gate structures.

Excellent stellar photometry and astrometry is possible with ugly PSFs imaged onto ugly detectors as long as
the image formation process within the detector is accurately modeled by the photometric reduction code.
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6. SPITZER SPACE TELESCOPE’S INFRARED ARRAY CAMERA

The following is an extract from the IRAC Data Handbook:19

The flux density of a point source measured from IRAC images depends on the
exact location where the peak of the Point Response Function (PRF) falls on a
pixel. This effect is due to the variations in the quantum efficiency of a pixel, and
combined with the undersampling of the PRF, it is most severe in channel 1. The
correction can be as much as 4% peak to peak. The effect is graphically shown in
Figure 5.1 where the normalized measured flux density (y-axis) is plotted against
the distance of the source centroid from the center of a pixel. The correction for
channel 1 can be calculated from

Correction = 1 + 0.0535 ×
[

1√
2π

− p

]
(5.14)

where p is the pixel phase (p =
√

(x − x0)2 + (y − y0)2 ), where x, y, is the centroid
of the point source and x0 and y0 are the integer pixel numbers containing the
source centroid. The correction was derived from photometry of a sample of stars,
each star observed at many positions on the array. The “ratio” on the vertical axis
in Figure 5.1 is the ratio of the measured flux density to the mean value for the
star. To correct the flux of a point source, calculate the correction from Equation
5.14 and divide the source flux by that correction. Thus, the flux of sources
well-centered in a pixel will be reduced by 2.1%. Pixel phase corrections for other
channels, if necessary, and after they have been more accurately determined than
currently, will be given in future Data Handbook versions.

Figure 5.1: Dependence of point source photometry on the distance of the centroid of a
point source from the nearest pixel center in channel 1. The ratio on the vertical axis is the
measured flux density to the mean value for the star, and the quantity on the horizontal
axis is the fractional distance of the centroid from the nearest pixel center.
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Following discussions with Spitzer Space Telescope’s Infrared Array Camera (IRAC) team members at the
207th meeting of the AAS in January 2006 in Washington, D.C., I have started working with various IRAC
team members with the goal of determining if it might be possible to improve stellar photometry from IRAC’s
Channel 1 (3.6µ) by creating an experimental version of the existing MATPHOT code with an effective intrapixel
quantum efficiency map for IRAC Ch1 hard-wired into the code.

Bill Hoffmann, an IRAC team member at the University of Arizona, has recently made the first estimate of
the intrapixel QE variation across a single IRAC Channel 1 pixel:

intrapix =

⎛
⎜⎜⎜⎜⎝

0.813 0.875 0.875 0.875 0.813
0.875 1.000 1.000 1.000 0.875
0.875 1.000 1.000 1.000 0.875
0.875 1.000 1.000 1.000 0.875
0.813 0.875 0.875 0.875 0.813

⎞
⎟⎟⎟⎟⎠ .

The mean conversion efficiency of this 5×5 convolution matrix is 91.01% . This is actually the relative intrapixel
QE map since the central subpixels of this map were arbitrarily set to one; while the quantum efficiency of IRAC
Channel 1 is high, the actual absolute values for the central subpixels are likely to be less than one. Full details
about the derivation of this intrapixel quantum efficiency map may be found in Hoffmann’s report Intra-pixel
Variation Effect on Aperture Photometry.20

Hoffmann21 has computed theoretical 5×5 supersampled versions of the IRAC Ch1 PSF across the camera’s
field-of-view. Fig. 4 shows the model PSF which was computed for the central region of the IRAC Ch1. The
left side of Fig. 4 shows a linear stretch of the PSF and the right side shows a log stretch. Although the PSF
appears to be reasonable in the linear stretch, which emphasizes the bright central core, the log stretch shows the
numerous weak higher-spatial-frequency features of this very complicated PSF. IRAC Ch1 PSFs are significantly
undersampled by the IRAC Ch1 camera;22 the mean effective background area6 (a.k.a. equivalent noise area5)
is 7.0 pixels23 as compared to the canonical value of 4π (∼12.6 pixels) for a critically-sampled Gaussian PSF.

Figure 4. A theoretical 5×5 supersampled version of the IRAC Ch1 PSF.

Engineering decisions can significantly affect the science return of an instrument. The significant flux loss
of IRAC Channel 1 is due to the combination of the non-negligible QE variation within a single pixel and the
significant undersampling of the PSF by large (1.2 arcsec) pixels. The significant loss of flux in IRAC Ch1 could
have been mitigated by simply oversampling the PSF. This capability was part of the initially proposed IRAC
design which included both diffraction-limited and wide-field modes. The diffraction-limited mode was lost when
the camera was simplified to include only the wide-field mode.

Image analysis software, which properly models the image formation process within the detector, has the
potential of recovering the stellar flux lost by IRAC Ch1. Use of such software could thus enhance the science
return from stellar (point source) observations which would appear, at first glance, to be limited to no better
than 5% accuracy.
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If an IRAC Ch1 observer follows the advice of the Infrared Array Camera Data Handbook19 and uses the
suggested correction formula (given above) to compensate for the lost stellar flux, then there will remain a
variation of about 2% which is due to the fact that much of the vertical variation seen in Fig. 5.1 of the
IRAC Data Handbook is systematic rather than random; the true flux correction function is a complicated
two-dimensional distribution that is not circularly symmetric.

In a collaborative research effort with Bill Glaccum (Spitzer Science Center), Bill Hoffmann, and other IRAC
team members, I have succeeded in creating a new experimental version of MATPHOT, called mpdy, which uses
Hoffmann’s intrapixel QE variation map20 and the theoretical 5×5 supersampled PSF shown in Fig. 4 to create
and analyze realistic IRAC Ch1 simulated observations.

Ten thousand IRAC Ch1 observations of a single star on a flat background were simulated and analyzed with
mpdy. Each stellar observation was simulated using the theoretical 5×5 supersampled IRAC Ch1 PSF shown in
Fig. 4; a star with 105 electrons was located near the center of 60×60 pixels on a flat background of 100 electrons
(e−). The efficiency of the photon to electron conversion process is calculated using the Hoffmann intrapixel QE
map given above. Realistically noisy data was created by adding photon noise and a readout noise level of 3 e−

pixel−1. Fig. 5 shows some of the results of the mpdy analysis of these simulations.

Figure 5. Results of the mpdy experiment with simulated IRAC Ch1 observations.

The horizontal axis of the left graph of Fig. 5 shows the subpixel offset (distance) the center of a star is from
the middle of a pixel; stars centered near the middle of a pixel will have small offset values while stars located
near the corner of a pixel will have offsets near 0.7 px. The vertical axis shows the observed (apparent) total flux
divided by the median observed total flux value (90825.8 electrons, expected 100000) of all ten thousand stars.
The median values of the box-and-whisker plots range from an excess flux of about 2% for stars centered near the
center of a pixel to a flux deficit of about 2% for stars centered near the corner of a pixel. Note that this graph
reproduces almost exactly the observed flux loss distribution seen in Fig. 5.1 of the IRAC Data Handbook.19

The vertical axis of the central graph of Fig. 5 shows the absolute flux ratio of the total fluxes divided by
the true flux of 105 electrons. The light grey (cyan) points show the observed absolute flux ratios and the black
(blue) points show the measured absolute flux ratios as reported by mpdy. Note that while the average stellar
observation suffered an absolute flux loss of ∼9%, stars centered near the middle of a pixel suffered, on average,
an absolute flux loss of ∼7% as compared to an absolute flux loss of ∼11% for stars centered near a pixel
corner. It is important to note that the vertical scatter seen in the observed flux ratios (absolute or relative)
is not random but systematic; a simple radial correction function can only partially recover the lost flux. The
measured absolute flux ratios are clustered around unity and are not a function of subpixel offset; the vertical
scatter seen in the measured absolute flux ratios is random. By modeling the image formation process within
the detector, mpdy was able fully recover all of the stellar flux lost due to the non-uniform IRAC Ch1 intrapixel
quantum efficiency variations.

The vertical axis of the right graph of Fig. 5 shows the measured total flux (as reported by mpdy) divided by
the median measured total flux value (99972.3 electrons, expected 100000) of all ten thousand stars. This graph
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shows that mpdy is able to recover the true stellar flux all the way down to the photon limit (photometric error
of ∼3.9 millimag).

The previous section showed how non-uniform intrapixel QE maps can potentially cause significant systematic
astrometric (position) errors for bright stars. Would we expect the IRAC Ch1 QE map to create systematic
astrometric errors? Yes, indeed. If an intrapixel QE map is roughly circularly symmetric about the middle of a
pixel (as is apparently the case for IRAC Ch1), then the centroid of an observed stellar image (i.e., the PRF)
which is centered in the middle of a pixel will be approximately at the same position as the centroid of the PSF.
However, if there is significant flux loss near the edges or corner of a pixel (as is apparently the case for IRAC
Ch1), then the centroid of a PRF which is centered near a pixel corner will most likely not be the same as the
centroid of the PSF — and the difference will be a systematic error rather than a random error.

The major component of the systematic astrometric error is the undersampling of the PSF by IRAC Ch1.
The intrapixel QE variation in the detector just makes the matter a little worse. Naively doing centroiding on
the recorded undersampled stellar image may lead to astrometry which has dubious value. However, photometric
reduction codes that model the image formation process within the detector can fully recover the true positions
of the stars with precision described by the Cramér-Rao Lower Bound. While some undersampling can be
tolerated without too much loss of astrometric precsion, one should remember that moderation is a virtue. If
the undersampling becomes severe enough that almost all of the light from a star falls within a single pixel, then
the astrometric precsion is significantly diminished.9

The mpdy experiment has been based on simulated IRAC Ch1 observations. So how well does mpdy work
with real IRAC Ch1 observations? Hoffmann’s IRAC Ch1 intrapixel QE map was based on Campaign Q focus
observations24 taken about 40 days after the launch of the Spitzer Space Telescope. The next obvious step in
this research effort would be to analyze Campaign R data (taken 4 days later) with mpdy and determine just
how well this theoretical approach works with real stellar near-infrared observations.

Mitigating the impact of flux loss problems seen in state-of-the-art NASA-grade infrared detectors is still in
its early days. Hoffmann’s IRAC Ch1 intrapixel QE map is the first attempt by the IRAC team to quantify
this effect. Derivation of the intrapixel QE map is an iterative process due to the apparent centroid shifting
caused by the non-uniform QE variation across a pixel; given an initial estimate of the intrapixel QE map, better
positions of the input stellar images can then be determined, which, in turn, enables a better measurement of
the intrapixel QE map to be made. Is a 5×5 map sufficiently fine enough to capture most of the PRF variations
seen with IRAC Ch1? Would a 15×15 map be better or would that be overkill?

Much more work remains to be done. However, the possibility of significantly improving the precision and
accuracy of space-based near-infrared stellar photometry and astrometry appears to be excellent. Ground-based
infrared stellar photometry can typically achieve 10% accuracy and 5% accuracy under excellent conditions;
the Spitzer Space Telescope is currently achieving only 5% photometry despite the fact that it is a cold stable
observing platform in deep space. A significant improvement to 2-3% photometric accuracy might be possible
with image analysis software that models the image formation process within the detector. A stretch goal of 1%
photometric accuracy may even be achievable with existing space-based cameras using state-of-the-art infrared
array detectors — if onboard cameras are electronically quiet and stable enough.

7. CONCLUSION

NASA and ESA astrophysical mission designers have a penchant to approve of optical designs that are under-
sampled. Although excellent justifications can often be made for using complex optical designs that have ugly
Point Spread Functions (e.g., reduced total mission cost) or for using detectors that are too big at a given wave-
length (e.g., giving a wider field-of-view), the analysis of resultant image data from these designs is frequently
problematical. Reliance upon traditional ground-based image analysis codes may preclude the use of innovative
space-based optical designs if such designs are rejected during the design review process for the very practical
reason that there is no proven way to accurately analyze the resultant image data.

The better a telescope and its instrumentation are characterized, the better one can extract the full scientific
potential out of the telescope/instrument combination. Enhancing the scientific return of NASA’s existing Great
Observatories does not come without a real cost; better characterization of space-based instrumentation may
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very likely require the development of new onboard calibration procedures. Some enhancements may be easy to
achieve if the time spent doing the new calibrations can be folded into existing instrument calibration schedules.
Other enhancements may simply not be practical – at this time – because current instruments may have electronic
designs that are not quiet or stable enough to realize the enhancement. By learning from the good and bad
engineering decisions that were made for existing astrophysical missions, we can enhance the scientific return of
future astrophysical missions while possibly lowering total mission costs.

I hope that I have demonstrated that innovative image analysis software has great potential to act as a
technology driver for advancing the state-of-the-art in the design of space telescopes and space-based instrumen-
tation.
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ABSTRACT

We present astronomical results from K-band adaptive optics (AO) observations of the wide binary system
σ Corona Borealis with the Lick Observatory natural guide star adaptive optics system on 2004 August 27–
29. Seeing conditions were excellent and the AO compensation was very good, with Strehl ratios reaching
50% at times. The stellar images were reduced using three different analysis techniques: (1) Parametric Blind
Deconvolution, (2) Multi-Frame Blind Deconvolution, and (3) the MATPHOT stellar photometry code. The
relative photometric and astrometric precision achievable with these three analysis methods are compared. Future
directions that this research can go towards achieving the goal of routinely obtaining precise and accurate
photometry and astrometry based on near-infrared AO observations are described.

Keywords: binaries, astrometry, photometry, adaptive optics techniques, infrared instrumentation

1. INTRODUCTION

Adaptive optics (AO) photometry and astrometry of binary stars is problematic.1 Photometry from AO observa-
tions of binary stars can exhibit errors (variations) which are larger than expected from simple noise analysis.2,3

Anisoplanatism and scintillation1 are contributing factors to this observed variation, but other sources of pho-
tometric error include calibration errors, such as residual flat-fielding errors, and instrumental/detector errors,
such as the location of the sources on the detector4 or intrapixel quantum efficiency variation in state-of-the-art
optical and near-infrared cameras.5,6

Photometric reduction errors can also be significant source of variation in AO observations of binaries. The
proper measurement of the background sky level is essential yet is frequently surprisingly difficult in many AO
observations of multiple star systems. Ground-based non-AO imagers generally have Point Spread Functions
(PSFs) which are characterized as having most of their power at low spatial frequencies due to the combination
of atmospheric turbulence and dome seeing. Space-based PSFs frequently have significant amounts of power
at higher spatial frequencies due to the lack of blurring caused by atmospheric turbulence. AO imagers gen-
erally produce PSFs with characteristics found in both uncorrected ground-based PSFs and space-based PSFs:
low-spatial-frequency features (e.g., broad halos) are combined with high-spatial-frequency features (e.g., sharp
central cores and rings of the Airy pattern). Although the human eye is drawn to the sharp core of the AO PSF,
that core frequently contains only a small fraction of the total energy from a given star; very large photometric
apertures are typically required in order to achieve even 90% of the encircled energy. If the determination of the
background “sky” level is based on the analysis of values of pixels that are too close to the core of the AO PSF,
then the total flux of the star can be significantly underestimated in a way that can lead to systematic rather
than random photometric errors. The fact that atmospheric turbulence typically causes the PSF to vary from
short exposure to short exposure just makes the precision analysis of AO binary star observations that much
more challenging.

Advances in Adaptive Optics II, edited by Brent L. Ellerbroek, Domenico Bonaccini Calia,
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In this article, we present astronomical results from K-band AO observations of the wide binary system σ
Corona Borealis (σ CrB) with the Lick Observatory natural guide star adaptive optics system. This astromet-
ric calibrator was chosen because the large separation between the two components would help minimize the
many measurement challenges facing AO observations of binary systems that were mentioned above. Section 2
describes these observations and their reductions using three different analysis techniques: (1) Parametric Blind
Deconvolution, (2) Multi-Frame Blind Deconvolution, and (3) the MATPHOT stellar photometry code. The
relative photometric and astrometric precision achievable with these three analysis methods are discussed and
compared in Section 3. The article concludes in Section 4 with a discussion of the future directions that this re-
search can go towards achieving the goal of routinely obtaining precise and accurate photometry and astrometry
based on near-infrared AO observations.

2. OBSERVATIONS AND REDUCTIONS

Observations of the wide binary system σ CrB (a.k.a. WDS J16147+3352, ADS 9979 AB, STF 2032) were
obtained at the Lick Observatory 3-m Shane Telescope using the natural guide star (NGS) adaptive optics
system7 with the IRCAL infrared imager8 on the nights of 2004 August 27-29. These observations were obtained
in the K-band with a Brackett-γ filter we label K(Brγ) (λ0 = 2.167 µm; δλ = 0.020 µm). The seeing conditions
were very good during the observing run with coherence length, r0 (550 nm) values ranging from 8-18cm. The
AO performance is typically characterized by the Strehl ratio with perfect performance, i.e. no aberrations in
the optical system, having a value of 100%. The measured K-band Strehl ratios for a number of point source
stars throughout the run ranged from 30-60%; a detailed discussion of the Strehl ratio calculation is given in
Section 4 of Ref. 4.

The nominal image scale for the IRCAL camera is 0.076′′ pixel−1 so that the K-band observations are critically
sampled with a theoretical resolution (λ/D) of 0.149′′. Figure 1 shows a single frame K-band observation of σ CrB.
The diffraction-limited cores are clearly visible as well as the residual halo structure, due to the uncompensated
components of the wavefront. The effects of the spiders are also seen in the Point Spread Functions (PSFs). Fig.
1 shows the strong degree of similarity in the structure between the widely separated PSFs.

Figure 1. A portion of a single K-band observation of σ CrB obtained with the IRCAL infrared imager. The left side
shows a linear stretch which emphasizes the bright central cores of the primary and secondary stars in this wide binary
system. The right side shows a logarithmic stretch which emphasizes the faint halos as well as the effects of the spiders.
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Each set of observations consisted of a series of short exposures (0.057-10 sec) which were initially preprocessed
by sky-subtraction. The astrometry and photometry of the stars were obtained by three independent methods,
Parametric Blind Deconvolution, Multi-frame Blind Deconvolution, and the MATPHOT6 stellar photometry
code. The first two techniques have been previously successfully applied to binary star, multiple star and cluster
adaptive optics observations;3,4, 9 this is the first time the last technique has been applied to AO observations of
binary stars.

Parametric Blind Deconvolution (PBD) models each of the PSFs in the image as a two-dimensional elliptical
Lorentzian profile, which has been found to be an appropriate model for AO images. For this application, a
Lorentzian profile was fit to each component in each of the separate frames in order to take into account any PSF
variability across the field, i.e. anisoplanatism. A weighted mean, with the weights coming from the uncertainties
of the fits, was computed for the separation angle (Sep), position angle (PA) and magnitude difference (∆m)
for both stellar components. The PSFs in Figure 1 show departures from a Lorentzian model in that Airy rings
are clearly visible. We compared the relative photometry and astrometry obtained from a Lorentzian fit to
those obtained from a combined Lorentzian and Airy function fit to an observation of the multiple star system
ι Cas (taken during this observation run) and found that the results did not change (within the dispersion of
the measurements) which justified the use of the the simpler parametric model for the analysis of the σ CrB
observations.

Multi-frame Blind Deconvolution (MFBD) finds a common solution to a set of independent images of the
same field assuming that the PSF varies from one frame to the next. The series of observations were broken
into smaller subsets, typically four per set of observations, and a deconvolved image was computed with each
component constrained to have a Gaussian shape at the end. The relative astrometry and photometry were
computed by two-dimensional elliptical Gaussian fits to these deconvolved images. As for PBD, the weighted
mean of the separation, position angle and magnitude difference were computed.

The MATPHOT6 stellar photometry code uses discrete (sampled) Point Spread Functions consisting of a
numerical table represented by a matrix in the form of a FITS10 image. Discrete PSFs are shifted within an
observational model using a 21-pixel-wide damped sinc function,

f shifted(x0) ≡
10∑

i=−10

f(xi)
sin (π(xi − x0))

π(xi − x0)
exp

(
−
[
xi − x0

3.25

]2)
, (1)

and position partial derivatives are computed using a five-point numerical differentiation formula,

f ′(xi) ≈ 1
12

[f(xi−2) − 8 f(xi−1) + 8 f(xi+1) − f(xi+2)] . (2)

Precise and accurate stellar photometry and astrometry are achieved with undersampled observations by using
supersampled discrete PSFs that are sampled 2, 3, or more times more finely than the observational data.
Although these numerical techniques are not mathematically perfect, they are sufficiently accurate for precision
stellar photometry and astrometry due to photon noise which is present in all astronomical imaging observations.6

The current C-language implementation11 of the MATPHOT algorithm is based on a robust implementation12,13

of the Levenberg14-Marquardt15 method of nonlinear least-squares minimization. Detailed analysis of simulated
space-based CCD stellar observations demonstrate that millipixel relative astrometry and millimag photometric
precision is achievable with complicated discrete PSFs.6

The MATPHOT stellar photometry code was developed for the analysis of space-based CCD cameras with
complicated PSFs. We report the results obtained from the extension of the MATPHOT algorithm to ground-
based AO PSFs.

The position and intensity of the primary and secondary stars were measured using the MATPHOT demon-
strator program, mpd,6,11 with a discrete PSF derived from a normalized background-subtracted image of the
primary star. As for PBD and MFBD, the weighted mean of the separation, position angle and magnitude
difference were computed.

Proc. of SPIE Vol. 6272  62720I-3



3. COMPARISON OF INDEPENDENT ANALYSIS TECHNIQUES

Christou and Drummond report4 that on 2004 August 28.90 the binary system σ CrB had the following param-
eters: a position angle of 237.◦5 ± 0.1, a large separation angle of 7.032 ± 0.008 arcsec, and K(Brγ) magnitude
difference of 1.01 ± 0.01 mag between the primary and secondary stars; these values were the unweighted mean
and standard deviation of the PBD and MFBD results. The unweighted mean minimizes the effect of any
systematic errors in one or the other of the two independent methods by favoring neither of them.

The left and central panels of Fig. 2 show, respectively, images of the primary and secondary stars taken from
a single 3-second observation. The right panel of Fig. 2 shows the residuals in the region of the secondary star
after the MATPHOT analysis has removed its best observational model (fit) from the image of the secondary star.
The images in Fig. 2 are displayed with histogram equalization stretches in order to maximize the information
content of each image. This enables us to see the strong degree of similarity in the fine structure details of
the halos of the primary and secondary stars. Note the excellent removal by MATPHOT of the residual halo
structure which is due to the uncompensated components of the wavefront. The right panel of Fig. 2 is graphical
evidence that this observation occurred in the regime of partial-anisoplanatism where variation occurs mainly in
the stellar cores.

Figure 2. The primary (left) of σ CrB, the secondary (middle), and the residuals left after fitting PSF to the secondary.
Histogram equalization stretches were used for all images; the relative dynamic ranges are, from left to right, 26.9 : 10.3 : 1 .

The results from the independent MATPHOT analysis are statistically identical to those reported for the
previous PBD and MFBD analysis: PA= 237.◦5±0.1, Sep= 7.015±0.003 arcsec, and ∆m = 1.02±0.01 mag. The
fact that three very different analysis techniques all yield the same answers, within the statistical uncertainties,
enhances our confidence in these results.

Our rms errors of the measured separation angle between the primary and secondary stars of σ CrB in
individual observations (typically 2–3 mas) is very small when compared to the nominal IRCAL pixel size of 76
mas or the diffraction spot size (λ/D) of 149 mas. This precision in the measurement of the separation angle of
a wide binary system has revealed a residual non-linearity in the spatial calibration (i.e., pincushion aberration)
of the IRCAL infrared imager which, although it is smaller than the diffraction spot size, is still quite significant
because it can cause systematic astrometric errors if its existence is not recognized.4

4. FUTURE DIRECTIONS

While the results of this study are quite encouraging for the future prospects for precision stellar photometry
and astrometry using near-infrared detectors on adaptive optics systems, much work remains to be done before
1% photometry and milliarcsec relative astrometry are routinely achieved. Working with these observations has
given us some insight on possible ways to improve ground-based near-infrared adaptive optics.

Ground-based observers using state-of-the-art infrared AO cameras at premier observing sites are now able
to achieve milliarcsec spatial resolutions with near-diffraction-limited optics. For example, our natural guide star
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AO observations with the IRCAL infrared imager yielded astrometric measurements with an angular resolution
of just 2% of the diffraction spot size of a 3-m telescope (149 mas) and less than 5% the size of a small (76
mas) AO camera pixel. The fact that three independent AO stellar image analysis techniques are precise enough
to reveal the existence of calibration errors in a state-of-the-art AO camera reveals the need for better (more
accurate) plate scale calibrations for the detectors placed behind AO systems — if the full potential for relative
astrometry with near-infrared AO stellar observations is to be reached. Better calibrations will require better
astrometric calibrators, the creation of which will require the allocation of many observing nights with excellent
seeing conditions on medium-to-large telescopes.

Searching for commonalities in different PSFs obtained with the same AO camera system on nights of similar
excellent seeing conditions may now be feasible using image analysis tools like the MATPHOT stellar photometry
code. Such a calibration effort may reveal an underlying non-negligible telescope-camera footprint on the PSF
which is either stable on a nightly basis or varies slowly in a predictable manner possibly as a function of tem-
perature. That knowledge could be combined with modeling of the atmospheric turbulence above the telescope
and of the AO system itself to improve our ability to produce real-time predictions of the AO system PSF from
real-time engineering information about the telescope and AO system — possibly including state information of
individual actuators in the deformable mirror(s) within the optical path.

Having investigated the current limits of relative AO photometry and astrometry with a wide binary system,
the next step is to see if the same precision levels can be achieved in studies of close binaries with overlapping PSFs
and ultimately in very crowded stellar fields like that found near the Galactic center. While this investigation
used a “simple” PSF, the MATPHOT algorithm was designed to handle complicated PSFs from space-based
segmented telescopes (e.g., the James Webb Space Telescope); it would be very interesting to determine if these
techniques will work as well with complicated PSFs from state-of-the-art laser guide star AO observations like
those produced by the LGSAO system of the Keck II 10-m telescope (see Fig. 1 of Ref. 16).

Finally, the process of doing MATPHOT analysis on these observations has provided insights towards ways
to improve the MATPHOT stellar photometry code so that it is more flexible, robust and easier to use. For
example, the shift from optical to the near infrared has revealed the need to give the MATPHOT code the ability
to use use “error maps” associated with the observational data. Optical CCD stellar observations typically can
be characterized with a simple noise model based on photon statistics (Poisson distributions) and shot noise
(Gaussian distributions), while near-infrared stellar AO observations usually have their backgrounds subtracted
– which can makes it very difficult, if not impossible, to create a reliable noise model for a near-infrared observation
based on assumptions which were valid for optical CCD observations. Giving MATPHOT the ability to use “error
maps” — generally produced by calibration pipelines — not only relieves the program from the burden of having
to produce a noise model of the observation, but it also makes the program more flexible in its ability to work
with optical and infrared observations.
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ABSTRACT 

The performance of an adaptive optics system is typically given in terms of the Strehl ratio of a point spread function 
(PSF) measured in the focal plane of the system. The Strehl ratio measures the normalized peak intensity of the PSF 
compared to that of an ideal PSF, i.e. aberration-free, through the system. One advantage of this metric is that it has been 
shown to be proportional to the rms wavefront error via the Marechel approximation. Thus, Strehl ratio measurements 
are used to determine the performance of the system.  Measurement of the Strehl ratio is frequently problematic in the 
presence of noise as can be the peak determination for critically sampled data. We have looked at alternative metrics, in 
particular the S1 sharpness metric. This metric measures the compactness of the PSF by the normalized sum of the 
squared image intensity and therefore relates to the intensity variance of the image. Using simulated AO PSFs, we show 
that there is a unique relationship between S1 and the Strehl ratio and we can therefore relate it back to the rms wavefront 
error. 
 

Keywords: adaptive optics, system performance, Strehl ratio, Image Sharpness 
 

1.  INTRODUCTION 
The performance of an Adaptive Optics (AO) system is generally given in terms of the Strehl ratio (S).  This metric lies 
between zero and unity with the latter defining the ideal point spread function (PSF) obtained with aberration free optics 
for the system in question.  Essentially, S is the measurement of the normalized peak in the image.  Aberrations in the 
wavefront cause the image to be less peaked than in the ideal image, therefore reducing the value of S. Furthermore, the 
Strehl ratio relates to the rms wavefront error φ by means of the extended Marechal approximation1, 

 
S ≈ e−φ 2

                                                                                  (1) 
 

and can therefore be used to estimate the residual wavefront error for AO systems. However Strehl ratio computations 
can be problematic2.  This is due to a number of factors, most notably (i) finding the sub-pixel peak value in the 
measured PSF and (ii) accurate determination of the zero-mean background or bias in the image. For Nyquist-sampled 
data, the peak-pixel value depends very strongly upon the sub-pixel location of the peak and can vary by almost a factor 
of two depending on whether the peak is centered on a single pixel or at the corner of four pixels.  The presence of the 
non-zero background or bias in the data further complicates the computation because of the photometric normalization 
required when comparing to the total energy in the aberration-free PSF. 
 
In this report we compare the application of one of the image sharpness metrics originally proposed by Muller and 
Buffington3, namely the S1 metric which is insensitive to the peak location. 
 

2.  IMAGE QUALITY METRICS 
 
The Strehl ratio is defined as follows: 
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S =
hpk

hii∑
ppk

pii∑
=

hpk

ppk

                                                                      (2)  

 
where h is the measured PSF, p is the ideal PSF and the pk subscript represents the peak value. When both PSFs are 
normalized to the same volume, then the Strehl ratio is simply the ratio of the peak values. Computation of S is not 
necessarily trivial2. Firstly, real data is discrete and the peak value is not always centered on a single pixel but usually at 
a sub-pixel location (see §4). Thus a valid interpolation procedure is needed to compute the peak value when its location 
is known. Secondly there is the computation of the ideal PSF.  This can be either done analytically or numerically.  For 
simple optics, the former is relatively straightforward making use of analytic descriptions of diffraction with circular 
apertures. For astronomical imaging especially, the optical path can be further complicated by the presence of spiders, 
which support the secondary, and by non-circular pupils such as the hexagonal segmented aperture of the Keck 
telescopes. For these applications, numerical wave-optics propagation is necessary. Furthermore, the effects of pixel-
binning and bandwidth have also to be taken into account for accurate Strehl ratio determination. 
 
Other techniques exist to calculate the image quality.  These have been discussed in a seminal paper by Muller and 
Buffington3. Three such techniques have been previously applied to speckle imaging data for frame selection4 and these 
are discussed below.  
 
The first is the S3 sharpness parameter as defined by Muller and Buffington which is simply the ratio of the peak value in 
the image normalized by the total power of the image, i.e. 
 

S3 =
hpk

hii∑                                                                                           (3) 

 
and is directly proportional to the Strehl ratio.  
 
The second is the S1 sharpness parameter which is related to the variance of the intensity values of the image, i.e. 
 

S1 =
hi

2

i
∑

hii∑( )2                                                                                                     (4)
 

 
The image intensity variance can be expressed as 
 

σ h
2 ≈ h 2 − h 2 =

hii∑ 2

N 2 −
hii∑

N

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

2

                                                                               (5)  

 
so that 
 

S1 =
σ h

2

N 2 h 2 +
1

N 2 .= Aσ h
2 + B                                                                                    (6)  

 
The third parameter is a measure of the width of the image as defined by the first- and second-order image moments, i.e. 
 

σ w
2 = M 2 − M1

2                                                                                                (7)  
 

and the jth moment is given as 
 

M j =
hiri

j

i∑
hii∑                                                                                          (8)  
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where ri is the distance of the ith pixel from the image center. For the analysis below it is convenient to have all three 
metrics to increase or decrease together such that the metrics are smaller for larger distributions and larger for smaller 
distributions, i.e. more pointed images. Thus the inverse of σw is computed. 
 

 
Fig. 1:  Gaussians used to demonstrate the sensitivity of the different image quality measurements, S1, S3 and σw, 

 
In order to demonstrate the effectiveness of these parameters, they were applied to a set of Gaussians of 
different widths as shown in figure 1. The Gaussians were generated in a 256×256 pixel image and doubled 
in size successively from an initial Gaussian width of σ of 1 to 32.  Figure 2 compares the input Gaussian 
width to the different image quality measurements. These results clearly demonstrate that all three 
measures are sensitive to the size of the Gaussian spot and readily distinguish relative changes in the 
compactness of the image.  
 

 
Fig. 2:  Image quality measurements, S1, S3 and σw, applied to the six Gaussians shown in Fig. 1. 

 
Previous work4 has shown that these three metrics distinguished non uniformly illuminated “blobs”, i.e. 
uncompensated short exposure images – specklegrams - according to changes in the instantaneous seeing as 
measured by the Fried parameter ro and were successfully used for frame selection. 
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3.  SIMULATED ADAPTIVE OPTICS IMAGES 
 
We generated a set of synthetic noise-free AO images following the approach used by Roberts et al. in a recent paper on 
Strehl ratio determination2.  Here, our simulations are characterized by the Palomar 5 m telescope entrance pupil size and 
geometry, namely a 5.08 m diameter aperture with an occulting secondary mirror of 1.83 m in diameter.  We assumed a 
pixel scale of 50.04 pixels/m in the aperture, giving us 256 pixels across the clear aperture at the center of a 512 x 512 
zero-filled array.  We did not model the secondary mirror support structure ("spiders") as part of these simulations. 
 
Our atmosphere was represented by a set of ten independent 512 x 512 Kolmogorov-spectrum phase screens with D / r0 
= 15 over the simulated aperture at a wavelength of λ = 1.635µm.  Following the methods of Sivaramakrishnan et al.5, 
we Fourier-transform these input phase arrays and multiply them by a "parabolic" filter in spatial frequency space to 
mimic the action of AO.  We reverse-transform the filtered arrays to obtain the AO-corrected wave fronts, and then 
create the complex phasor exp[iφ(x,y)] describing the electric field corresponding to the AO-corrected phase φ(x,y).  We 
then multiply these complex phasors by the array representing the telescope aperture, embed the filtered and masked 
array in the center of a 2048 x 2048 zero-filled array, and Fourier-transform the resultant array to obtain the image field.  
We square both the real and complex portions of the image field to produce our PSF.  Our choice of final array size 
provides us with a sampling of λ / 8D in the image plane.   
 
Since the cut-off frequency of our AO filter cannot be higher than the spatial Nyquist frequency of the actuator spacing 
(as projected on to the primary mirror diameter), the number of actuators across the pupil determines the quality of our 
simulated AO compensation.  Twelve different levels of AO correction were simulated by adjusting the number of 
actuators across the diameter of the telescope pupil (Nact), ranging from very poor (S = ~5%) to very good (S = 99%) 
wavefront compensation. Ten different wavefront realizations for each Strehl value were computed.  The shift-and-add 
images of these ten frames are shown in Fig. 3 representing the mean tilt-free PSF for each of the twelve cases.  Unlike 
the Gaussian cases illustrated in Fig. 1 the PSFs show different spatial frequency structure with a diffraction-limited core 
visible in all of them and the residual “seeing” halo shrinking considerably as the compensation improves.  
 

 
Fig. 3:  Mean point spread functions for the twelve different levels of wavefront correction for the noise-free simulations 

(Logarithmic display) 
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4.  IMAGE QUALITY METRICS APPLIED TO AO IMAGES 
 

 
Fig. 4:  Image quality metrics for the individual realizations for each of the different AO corrections. 

 

 
Fig. 5:  Comparison of the normalized image sharpness metrics as shown in Fig. 4 for  (top) the full sized image and 

(bottom) for the Nyquist sampled image which also shows the quadratic relationship between the two. 
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Fig. 4 shows the three image quality metrics for each of the 10 different realizations of the 12 different AO corrections 
using photometric aperture of 128 λ / D. As can be seen, both S1 and S3 nicely track the variation in image quality.  As 
the rms wavefront error decreases, the image quality as measured by these parameters improves and also shows less 
scatter.  The image width also shows a similar trend with its inverse increasing as the compensation improves. However, 
this appears to be a rather insensitive measure in that the range of values is very small, less than 1% and this is in the 
presence of zero noise.  Thus we limit further discussion of the image metrics to the two sharpness measures S1 and S3.  
The relationship between these two metrics is shown in Fig. 5 which compares the two measures normalized to unity for 
the aberration-free case so that S3 is now the Strehl ratio.   
 
For a more realistic application the synthetic data was downsized to Nyquist sampling, i.e. 1 pixel = λ / 2D, and both 
sharpness parameters were then recomputed in the same physical aperture size..  There was no significant change in their 
normalized values from the original four times critically sampled generation.  The least-squares fit of the two sharpness 
parameters was computed showing a quadratic relationship  
 

S1 = 0.0250+ 0.9707S3
2                                                                                  (9 

 
between them which is not unexpected in that S1 relates to the sum of the squared intensity in the image.  This is also 
illustrated in Fig. 5.  Thus S1 ∝ exp(-2σ2). 
 
It is important to note here that the image peak metric S3 is sensitive to the effects of pixelization.  By down-sampling, 
the peak is no longer located on a single pixel and an interpolation scheme is required to find the sub-pixel peak value. 
This can be done either by Fourier shifting6 or by using a damped sinc interpolator7.  The former was used for the 
measurements shown in Fig. 5.  The requirement for locating the sub-pixel peak value is illustrated in Fig. 6. Measuring 
the peak pixel value causes an undestimate of the metric which increases towards higher Strehl ratios as does the 
dispersion of the measurements. This is systematic behavior as more and more light is concentrated in the central pixel. 
 

 
Fig. 6:  The effects of pixelization of the measurement of the image peak, i.e. S3. The grey line shows the ideal case and the 

dashed line shows the maximum S3 measurement for the data in the different AO compensation bins shown by their 
means and standard deviations.  
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4.1  The Effect of Additive Noise on Image Sharpness Metrics 
 

 
 

Fig. 7:  Sample read-noise contaminated images for four of the different levels of AO compensation.  Top-to-Bottom: 
noiseless, 41dB, 37dB and 31 dB. (All images displayed on a logarithmic scale from zero to maximum). 

 
The previous section has clearly shown that either of the sharpness metrics can clearly distinguish the image quality of 
the AO compensated images as a function of the rms residual wavefront error for noiseless data.  However, this is an 
unrealistic scenario and in this section we investigate the presence of additive read noise of these metrics simulating 
infrared AO observations.  Zero-mean additive random noise simulating read noise was added to each of the different 
PSFs for four different signal-to-noise cases. The strength of the noise, measured as -10log10{Pn/Ps}, was 31dB, 37dB, 
41dB and 47dB and its presence in the images is shown in Fig. 7.   
 
The presence of noise affect both S1 and S3 sharpness measurements but in different ways. For S3 which measures the 
image peak, a single realization of the noise on a single pixel, or the pixels surrounding the peak are affected.  By 
comparison, the effect of noise on the measurement of S1 is predictable. If the measured PSF is represented as 
 

˜ h i = hi + ni                                                                                           (10) 
 

where ni represents a single realization of zero-mean additive noise, then S1 can be expanded as 
 

˜ S 1 =
˜ h i

2

i∑
˜ h ii∑( )2 =

hi + ni( )2

i∑
hi + ni( )

i∑[ ]2 =
hi

2 + 2 hinii∑ + ni
2

i∑i∑
hii∑( )2

+ nii∑( )2                                                           (11)
 

 
However as the noise is zero-mean and uncorrelated with the signal, then this expression simplifies to 
 

Proc. of SPIE Vol. 6272  62721Y-7



5,
 
(n

oi
se

) 
0 

0 
0 

0 
•0

 
P 

b 
P

 
—

 
0 

C
fl

 
—

 
C

 
0 

01
 

—
 

01
 

0.05

0

0.05

00 0.05 0 0.05

1

 

 

˜ S 1 =
hi

2 + ni
2

i∑i∑
hii∑( )2 =

hi
2

i∑
hii∑( )2 +

ni
2

i∑
hii∑( )2 =

hi
2

i∑
hii∑( )2 +

Nσ rms
2

hii∑( )2 = S1 +
Nσ rms

2

hii∑( )2                                           (12)
 

 
where σrms is the rms of the additive noise and N the number of pixels used for the summation. Thus the metric is 
contaminated by a known bias term, assuming that the SNR is known.  
 

 
Fig. 8 illustrates the effects of the additive noise in the determination of the two image sharpness metrics for the four 
different noise cases.  These noise-contaminated parameters are plotted against the noise-free measurements showing the 
effect. For both S1 and S3, it can be seen that as the noise increases the scatter in the correlation plots also increases.  And 
for S1, the bias term given in (12) is clearly visible especially in the lowest SNR case.  Fig. 9 shows the effect on the 
relationship between the two parameters due to the measurement noise.  As seen in the Fig. 8, the three higher SNR 
cases appear to have little effect on either parameter.  However, the lowest SNR case shows both a large scatter for the 
two measurements as well as the shift in S1 due to the bias term as shown by the shifted quadratic fit. 

 
Fig. 8:  The effect of additive zero-mean noise on the sharpness parameters for each of the synthetic images used for the 

noise-free measures.  The dotted lines represent the noise-free correlation and the dashed lines for S1, the bias term in 
(12). 
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The effect of noise on the measured metrics is better investigated by looking at the fractional errors, ∆Sj = {Sj – Sj′} / Sj, 
in their measurements when noise is present. This is illustrated in Figs. 10 and 11 for S3 and S1 respectively, which plots 
the fractional errors as a function of the rms residual wavefront error for the four different SNR cases studied. For S3 it 
can be seen that the rms error increases as the SNR decreases as expected and for the three highest SNR cases, this error 
is less than 2% and approaches 10% for the lowest SNR case.  

 
Fig. 9:  The effect of additive zero-mean noise on the relationship between the two sharpness parameters. The solid lines 

represent the quadratic relationship between the two metrics for the noiseless and the lowest SNR cases. 
 

 
Fig. 10:  Fractional errors on the estimate of the S3 metric as a function of the rms wavefront error for the additive SNR 

conditions. 
 

 
 

Fig. 11:  Fractional errors on the estimate of the S1 metric as a function of the rms wavefront error for the additive SNR 
conditions. Left: without noise bias subtraction; Right: with noise bias subtraction. 
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 The fractional errors in S1 depend very strongly upon the removal of the noise bias term in (12).  Fig. 11 compares these 
fractional errors for the four different SNR cases with (bottom panel) and without (top panel) the noise bias removal.   
These plots further illustrate the need for this bias term to be calibrated.  Once it is, comparison with the S3 results, 
shown in Fig. 10, demonstrate that the performance of the two metrics is not too dissimilar.  The rms fractional errors are 
given in Table 1 for the two metrics.  This table shows that the fractional errors for S1 are approximately twice those for 
S3 except for the worst SNR case where it is approximately a factor of four greater. So what is the cause of the larger 
errors?  Zero-mean additive noise was added to the images.  However, each noise realization does not have an actual 
zero-mean value due to the finite number of pixels used to measure the image metric.  For S3 this shows up in the 
denominator only, whereas for S1 this non-zero mean also contributes to the numerator.  By comparison the numerator of 
S3 is affected by a single noise term on the image peak. 
 

Table 1:  Fractional error in the image metric determination due to zero mean additive noise.  
 
 
 
 
 
 
 
4.2 The Effect Signal Strength on Image Sharpness Determination. 
 

 
Fig. 12:  The effect of signal strength on the computation of the two image sharpness parameters. These plots shows the 

variation in measured image sharpness as a function of the number of electrons in the image. The short-dashed lines 
represent the perfect value of the sharpness metrics. The long-dashed line represents the maximum S3 value. The 
metrics S3

′ and S1
′ represent the background subtracted estimates of the corresponding sharpness metrics. 

 
Previously we looked at the effect of additive read noise on the measurement of the image sharpness metrics.  This is 
important especially when dealing with infra-red observations.  The MAPHOT package7 was used to generate twenty-
five separate measurements of the same oversampled PSF at eleven different brightness levels. Each simulated 
observation had a background of 100 electrons and read noise of 3 electrons with a gain of unity, i.e. 1 electron per DN.  
The trend is obvious for both metrics.  As the brightness of the source decreases, i.e. the number of electrons decreases, 
more and more positive background noise is diluting the source signal. This is the classic photometric problem of using 
too large a photometric aperture to measure the signal. However, if the aperture is reduced, then some source signal is 
omitted, i.e. outside of the aperture, so that normalization by the flux of an ideal PSF will generally result in an 

SNR (dB) S1 S3 
47 0.004 0.002 
41 0.019 0.010 
37 0.036 0.018 
31 0.406 0.096 
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overestimate of the Strehl ratio.  It is interesting to note that for this scenario, even one million electrons is not sufficient 
to reach the ideal metric value falling short by ∼ 10%.  
 

5. SUMMARY 
In this report we have compared different approaches for measuring image quality of an Adaptive Optics system.  We 
have demonstrated that over a broad range of correction with rms residual wavefronts corresponding to Strehl ratios of 
5%-99%, that both major sharpness parameters initially suggested by Muller and Buffington3 behave well giving unique 
correlation in the metric as a function of the residual wavefront error. Furthermore, we have demonstrated that there is a 
quadratic functional relationship between the two such that S1 ∝ S3

2 where S3 is essentially the un-normalized Strehl 
ratio.  Thus we can relate S1 back to the rms wavefront residuals by means of the extended Marechal approximation.  
 
We next investigated the presence of noise in the determination of these metrics. In the regime where additive 
background noise dominates such as for infrared observations, both metrics show a substantial increase in scatter as the 
noise increases.  The S1 metric also introduces a noise bias term even in the presence of zero-mean noise which is not the 
case for S3. However, given knowledge of the noise statistics, this bias term is predictable and can be removed from the 
metric estimate as demonstrated. The performance of both metrics for such noisy data was determined from the rms 
fractional error for the full range of compensation values for a given SNR case.  It was found that S3 had smaller errors 
and was less sensitive to the noise than the S1 metric.  In this analysis, it was assumed that the background was known 
absolutely to be zero but in working with real data this would not be the case, the classic photometric problem of 
accurately determining the background. The finite number of pixels used for both metrics affects S1 doubly so that the 
non-zero mean thus produced will introduce extra error in the estimates especially as this is a metric which measures the 
square of the intensity.  This represents a further study area for evaluating these metrics.  
 
The second noise case we studied affected the signal strength, i.e. the number of photoelectrons in each image.  It was 
found that this had a substantial effect on the value of  both sharpness metrics measured.  Under relatively realistic 
observing conditions with a million electrons in the signal, both metrics underestimated their noiseless values by ∼ 10%.  
This implies that for accurate determination of system performance where the metric is used to determine the rms 
residual wavefront error only bright sources should be used. This also implies that when comparing system performance 
over a number of nights, that stars of the same brightness should always be used. If bright sources are not available, then 
a correction factor will need to be applied.  Future work includes investigation of what this correction factor would be 
for specific AO/camera systems using sophisticated computer end-to-end computer modeling.  However for relative 
increase or decrease of system performance both would appear to be acceptable metrics.  We recommend that stars with 
similar brightness and with similar exposure times should always be used where possible for evaluating performance 
changes over many different time scales.  
 
Measuring Strehl ratio is problematic and for infrared AO observations even more so. Additional problems include 
accurate sky calibration especially so because the infrared sky can vary over time scales as short as single exposures 
which the precision with which the encircled energy faction can be estimated.  
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Improving the Precision of Near-Infrared Stellar Photometry by Modeling the Image

Formation Process within a Lossy Detector
1

Kenneth Mighell

National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719

ABSTRACT

Current infrared detector technology can produce imagers with non-uniform intrapixel response functions. Cameras

based on such detectors can have large systematic errors in the measurement of the total stellar flux. Although this

problem can be mitigated by oversampling the stellar image, many near infrared cameras are undersampled in order

to achieve a large field of view. The combination of undersampling stellar images with non-uniform detectors is

currently diminishing the science return of some infrared imagers onboard the Hubble Space Telescope and the

Spitzer Space Telescope. Large intrapixel quantum efficiency variations can also cause significant systematic

position measurement errors. Although the recorded flux and position of point sources is corrupted by using

detectors with non-uniform intrapixel response functions, it is still possible to achieve excellent stellar photometry

and astrometry — if the image formation process inside the detector is accurately modeled. A practical

demonstration of how the precision and accuracy of near infrared stellar photometry can be significantly improved is

provided by a detailed analysis of stellar observations obtained with Spitzer’s Infrared Array Camera (IRAC)

instrument.

1. PHOTOMETRY AND ASTROMETRY WITH DISCRETE POINT SPREAD FUNCTIONS

The MATPHOT algorithm for precise and accurate stellar photometry and astrometry with discrete (sampled) Point

Spread Functions (PSFs) was described in detail by Mighell [1]. The current C-language [2] implementation of the

MATPHOT algorithm works with user-provided discrete PSFs consisting of a numerical table represented by a

matrix in the form of a FITS image [3]. Discrete PSFs are shifted within an observational model using a 21-pixel-

wide damped sinc function [4] and position partial derivatives are computed using a five-point numerical

differentiation formula [5]. Precise and accurate stellar photometry and astrometry are achieved with undersampled

charge coupled device (CCD) observations by using supersampled discrete PSFs that are sampled 2, 3, or more

times more finely than the observational data. Although these numerical techniques are not mathematically perfect,

they are sufficiently accurate for precision stellar photometry and astrometry due to photon noise which is present in

all astronomical imaging observations. The current photometric reduction code [6] is based on a robust

implementation of the Levenberg-Marquardt method of nonlinear least-squares minimization [7–10]. Detailed

analysis of simulated Next Generation Space Telescope observations demonstrate that millipixel relative astrometry

and millimag photometric precision are achievable with complicated space-based discrete PSFs [1].

1
This work is based on archival data obtained with the Spitzer Space Telescope, which is operated by the Jet Propulsion

Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by an award

issued by JPL/Caltech.
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2. OBSERVATIONS AND PHOTOMETRIC REDUCTIONS

Sixteen short (0.4 s) calibration observations of the K0 star PPM 9412 were obtained on 2003 October 8 UT with

Channel 1 (3.6 µm) of the Infrared Array Camera (IRAC; [11]) onboard the Spitzer Space Telescope (see Table 1).

Table 1. IRAC Ch1 Observations of PPM 9412

The IRAC basic calibrated data (BCD) images were retrieved from the Spitzer data archive. These observations

were analyzed with the imexamine task of NOAO’s Image Reduction and Analysis Facility (IRAF; [12–13])

package and a new experimental version of MATPHOT, called MPDZ, which uses the following relative intrapixel

quantum efficiency (QE) variation map [14] for IRAC Channel 1 (Ch1),

,

and a theoretical IRAC Ch1 PSF [15] for the central region of IRAC Ch1 (see Fig. 1).

Fig. 1. A theoretical 5x5 supersampled version of the IRAC PSF for the central region of Ch1

[15]. The left side of 4 shows a linear stretch of the PSF and the right side shows a log stretch.

Although the PSF appears to be reasonable in the linear stretch, which emphasizes the bright

central core, the log stretch shows the numerous weak higher-spatial-frequency features of this

very complicated PSF. IRAC Ch1 PSFs are significantly undersampled by the IRAC Ch1 camera

[11].
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3. SQUARE APERTURE PHOTOMETRY

Square aperture photometry with a 21x21 pixel box centered on the star was done using the interactive “m”

keyboard command of IRAF’s imexamine task. Fig. 2 shows a 5.6% peak-to-peak spread in these square aperture

flux measurements.

Fig. 2. Square aperture photometry (21x21 pixels)

The variation in flux seen in Fig. 2 is not completely random. The right graph of Fig. 2 shows that the total stellar

flux is correlated with the amount of flux found in the central pixel. Examination of the individual observations

reveal that the observations with the most stellar flux have stellar images that are centered in the middle of a pixel

while those observations with the least stellar flux are centered on a pixel corner. This same effect is seen in Fig. 3

which is taken from the IRAC Data Handbook [16].

Fig. 3. Normalized measured flux density (y-axis) is plotted against the distance of the source

centroid from the center of a pixel (source: Fig. 5.1 of the IRAC Data Handbook [16]).

The flux density of a point source measured from IRAC images depends on the exact location where the peak of the

stellar image (the Point Response Function) falls within the central pixel of the stellar image. This effect is due to

the variations in the quantum efficiency of a pixel, and combined with the undersampling of the PRF, it is most

severe in Channel 1 [16]. The correction can be as much as 4% peak to peak.
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4. CIRCULAR APERTURE PHOTOMETRY

Circular aperture photometry centered on the star with a radius of 10 pixels was done using the interactive “a”

keyboard command of IRAF’s imexamine task. Fig. 4 shows a 5.3% peak-to-peak spread in the raw circular

aperture flux measurements (open circles). Applying the recommended Ch1 flux correction (solid line in Fig. 3)

from the IRAC Data Handbook reduces the peak-to-peak spread to 4.9% (filled circles).

Fig. 4. Circular aperture photometry (radius of 10 pixels)

Hoping to improve the measurement by reducing the contribution of background noise, circular aperture photometry

centered on the star with a radius of 5 pixels was done using the interactive “a” keyboard command of IRAF’s

imexamine task. Fig. 5 shows a 4.5% peak-to-peak spread in the raw circular aperture flux measurements (open

circles). Applying the recommended Ch1 flux correction (solid line in Fig. 3) from the IRAC Data Handbook

reduces the peak-to-peak spread to 3.5% (filled circles).

Fig. 5. Circular aperture photometry (radius of 10 pixels)

5. MATPHOT SIMULATIONS

Ten thousand IRAC Ch1 observations of a single star on a flat background were simulated and analyzed with

MPDZ. Each stellar observation was simulated using the theoretical 5x5 supersampled IRAC Ch1 PSF shown in

Fig. 1; a star with 10
6

electrons was located near the center of an field of 60x60 pixels on a flat background of

100 electrons. The horizontal axis of the left graph of Fig. 6 shows the subpixel offset (distance) the center of a star

is from the middle of a pixel; stars centered near the middle of a pixel will have small offset values while stars

located near the corner of a pixel will have offsets near 0.7 px. The vertical axis of the left graph of Fig. 6 shows the

absolute flux ratio of the total fluxes divided by the true flux of 10
6

electrons. The cyan points show the observed

absolute flux ratios and the blue points show the measured absolute flux ratios as reported by MPDZ. Note that
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while the average stellar observation suffered an absolute flux loss of about 9%, stars centered near the middle of a

pixel suffered, on average, an absolute flux loss of about 7% as compared to an absolute flux loss of about 11% for

stars centered near a pixel corner. It is important to note that the vertical scatter seen in the observed flux ratios is

not random but systematic; a simple radial correction function can only partially recover the lost flux. The measured

absolute flux ratios are clustered around unity and are not a function of subpixel offset; the vertical scatter seen in

the measured absolute flux ratios is random. By modeling the image formation process within the detector, MPDZ

was able to able fully recover all of the stellar flux lost due to the non-uniform IRAC Ch1 intrapixel quantum

efficiency variations.

Fig. 6. Results of the MPDZ experiment with simulated IRAC Ch1

The vertical axis of the right graph of Fig. 6 shows the observed (apparent) total flux divided by the median

observed total flux value of all ten thousand stars. The median values of the box-and-whisker plots (the central

horizontal bar in each box) range from an excess flux of about 2% for stars centered near the center of a pixel to a

flux deficit of about 2% for stars centered near the corner of a pixel. Note that this graph reproduces almost exactly

the observed flux loss distribution seen in Fig. 5.1 of the IRAC Data Handbook [16]. One sees that even after the

recommended flux correction (thick line of right graph of Fig. 6) is applied an approximate peak-to-peak spread of

about 3% would remain for many observations – and that is exactly what is seen in Fig. 5.

6. MATPHOT PHOTOMETRY

MATPHOT PSF-fitting photometry was performed on all of the observations using MPDZ with the theoretical 5x5

supersampled IRAC Ch1 PSF shown in Fig. 1. The open diamonds in Fig. 7 show a 5.2% peak-to-peak spread in

the raw measured stellar flux values reported by MPDZ.

Fig. 7. MATPHOT (MPDZ) photometry
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The upper-left image in Fig. 7 shows central portion of the first IRAC Ch1 observation in Table 1. The noiseless

best-fit model of the observation is shown in the upper-right image. The residuals remaining after the best-fit model

is subtracted from the observation are shown in the lower-left image. The lower-right image is the same as the

residual image except that all residuals within a radius of 5 pixels from the fitted center of the star hae been set to

zero. All of these images are displayed with the same negative linear stretch which was chosen to emphasize the

faint features of the stellar image.

The filled diamonds in Fig. 7 show a 1.7% peak-to-peak spread; these flux values are the combination of the raw

measured stellar fluxes (open diamonds) with the sum of all of residuals (positive and negative) within a radius of 5

pixels from the fitted center of the star.

MATPHOT with residuals yield an improvement in photometric precision of more than 100% over the best results

obtained with aperture photometry. The left graph of Fig. 8 compares MATPHOT photometry with residuals

(FLUX8: filled diamonds in Fig. 7) with the best corrected circular photometry (FLUX6: filled circles in Fig. 5).

The errorbars plotted with the FLUX8 values are the errors estimated by MPDZ for the raw MATPHOT flux

estimates (FLUX7: open diamonds in Fig. 7).

Fig. 8. Comparison between MATPHOT and aperture photometry

We see that although the recorded flux of point sources was corrupted by using lossy detectors with large intrapixel

quantum efficiency variations, it is possible to significantly improve the precision of stellar photometry from

observations made with such detectors – if the image formation process inside the detector is accurately modeled.

Simple aperture photometry of stellar observations obtained with IRAC Ch1 can be significantly improved by

simply dividing the measured aperture flux with the volume of the Point Response Function (PRF) which is the

convolution of the Point Spread Function and the discrete Detector Response Function. The right graph of Fig. 8

compares the best uncorrected circular photometry (FLUX5: open circles in Fig. 5) with those flux values divided

by the volume of the best-fit PRF computed by MPDZ. The resultant peak-to-peak spread is 1.9% which is just

slightly worse than the 1.7% spread from the MATPHOT with residual results. This suggests that aperture

photometry from IRAC Ch1 observations could probably be significantly improved by using a two-dimensional

correction function instead of using the radial correction function currently recommended in the IRAC Data

Handbook. The derivation of that two-dimensional correction function would require a detailed analysis of a large

number of dithered IRAC Ch1 unsaturated stellar observations.
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7. SUMMARY AND DISCUSSION

This detailed analysis of multiple observations of a single bright isolated star obtained with Channel 1 of the

Spitzer Space Telescope’s Infrared Array Camera (IRAC) instrument yields an improvement in photometric

precision of more than 100% over the best results obtained with aperture photometry. The improvement is achieved

by accurately modeling the image formation process within lossy detectors that exhibit large intrapixel quantum

efficiency variations.

Mitigating the impact of flux loss problems seen in state-of-the-art NASA-grade infrared detectors is still in its early

days. Hoffmann's IRAC Ch1 intrapixel QE map [14] is the first attempt by the IRAC team to quantify this effect.

Derivation of the intrapixel QE map is an iterative process due to the apparent centroid shifting caused by the non-

uniform QE variation across a pixel; given an initial estimate of the intrapixel QE map, better positions of the input

stellar images can then be determined, which, in turn, enables a better measurement of the intrapixel QE map to be

made

Much more work remains to be done. However, the possibility of significantly improving the precision and

accuracy of space-based near-infrared stellar photometry and astrometry appears to be excellent. Ground-based

infrared stellar photometry can typically achieve 10% accuracy and 5% accuracy under excellent conditions;

the Spitzer Space Telescope is currently achieving only 5% photometry despite the fact that it is a cold stable

observing platform in deep space. A significant improvement to 2% photometric accuracy might now be possible

with image analysis software that models the image formation process within the detector. A stretch goal of 1%

photometric accuracy may even be achievable with existing space-based cameras using state-of-the-art near-infrared

detector technology – if onboard cameras are electronically quiet and stable enough.

I wish to thank Bill Glaccum, Bill Hoffmann, David Elliott, Patrick Lowrance, and the rest of the IRAC team

for their support of this research effort. This work has been supported by a grant from the National Aeronautics and

Space Administration (NASA), Interagency Order No. NNG06EC81I, which was awarded by the Applied

Information Systems Research (AISR) Program of NASA's Science Mission Directorate.
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The Lost Flux Method: A New Algorithm for Improving
the Precision of Space-Based Near-Infrared Stellar
Photometry with Lossy Detectors

Kenneth J. Mighell
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Abstract. Current infrared detector technology can produce imagers
with non-uniform intra-pixel response functions. Cameras based on such
detectors can have large systematic errors in the measurement of the to-
tal stellar flux. Although this problem can be mitigated by oversampling
the stellar image, many near-infrared cameras are undersampled in order
to achieve a large field of view. The combination of undersampling stel-
lar images with non-uniform detectors is currently diminishing some of
the potential science return of some infrared imagers onboard the Hubble
Space Telescope and the Spitzer Space Telescope. Although the recorded
flux and position of point sources is corrupted by using detectors with
non-uniform intrapixel response functions, it is still possible to achieve
excellent stellar photometry and astrometry—if the image formation pro-
cess inside the detector is accurately modeled. A new analysis algorithm
called the Lost Flux Method is described and used to demonstrate how the
precision of stellar photometry from an existing space-based near-infrared
camera with a lossy detector can be significantly improved. Multiple ob-
servations of a single bright isolated star obtained with Channel 1 of the
Spitzer Space Telescope Infrared Array Camera (IRAC) instrument are
analyzed with the Lost Flux Method which yields an improvement in
photometric precision of more than 100% over the best results obtained
with aperture photometry.

1. Photometry and Astrometry with Discrete PSFs

The MATPHOT algorithm for precise and accurate stellar photometry and as-
trometry with discrete (sampled) Point Spread Functions (PSFs) was described
in detail by Mighell (2005). The current C-language implementation of the
MATPHOT algorithm works with user-provided discrete PSFs consisting of a
numerical table represented by a matrix in the form of a FITS image (Hanisch
et al. 2001). Discrete PSFs are shifted within an observational model using a 21-
pixel-wide damped sinc function and position partial derivatives are computed
using a five-point numerical differentiation formula. Precise and accurate stellar
photometry and astrometry are achieved with undersampled charge coupled de-
vice (CCD) observations by using supersampled discrete PSFs that are sampled
2, 3, or more times more finely than the observational data. Although these nu-
merical techniques are not mathematically perfect, they are sufficiently accurate

1
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for precision stellar photometry and astrometry due to photon noise which is
present in all astronomical imaging observations. The current photometric re-
duction code1 is based on a robust implementation of the Levenberg-Marquardt
method of nonlinear least-squares minimization (Levenberg 1944; Marquardt
1963; Mighell 1989, 1999). Detailed analysis of simulated James Webb Space
Telescope observations demonstrate that millipixel relative astrometry and mil-
limagnitude photometric precision should be achievable with complicated space-
based discrete PSFs (Mighell 2005).

2. Observations and Photometric Reductions

Sixteen short (0.4 s) calibration observations of the K0-class star PPM 9412
(a.k.a. HIP 6378) were obtained2 on 2003 October 8 UT with Channel 1 (3.6
µm) of the Infrared Array Camera (IRAC; Fazio et al. 2004) on-board the Spitzer
Space Telescope. The IRAC basic calibrated data (BCD) images were retrieved
from the Spitzer data archive with the kind assistance of IRAC team member B.
Glaccum. These observations were analyzed with the imexamine task of NOAO’s
Image Reduction and Analysis Facility (IRAF; Tody 1993 and references therein)
package and a new experimental version of MATPHOT, called MPDZ, which
uses the following relative intrapixel quantum efficiency (QE) variation map for
IRAC Channel 1 (Ch1),

intrapix =









0.813 0.875 0.875 0.875 0.813
0.875 1.000 1.000 1.000 0.875
0.875 1.000 1.000 1.000 0.875
0.875 1.000 1.000 1.000 0.875
0.813 0.875 0.875 0.875 0.813









(Hoffmann 2005a), and a theoretical IRAC Ch1 PSF for the central region of
IRAC Ch1 (Hoffmann 2005b). MATPHOT models the image formation process
within the detector by convolving the PSF with the discrete Detector Response
Function (DRF) which, in this case, is based on the relative intrapixel QE map
given above.

3. Square Aperture Photometry

Square aperture photometry with a 21 × 21 pixel box centered on the star was
done using the interactive “m” keyboard command of IRAFs imexamine task. A
5.6% peak-to-peak spread was seen in these square aperture flux measurements.
A non-random variation in flux is quite apparent in these 16 IRAC Ch1 obser-
vations: the total stellar flux measured is strongly correlated with the amount
of flux found in the central pixel. Examination of the individual observations
revealed that the observations with the most stellar flux have stellar images that

1All source code and documentation for MATPHOT is available at this website:
http://www.noao.edu/staff/mighell/matphot

2Observations: ads/sa.spitzer#00068nnnnn where nnnnn is 75392, 76672, 76928, 77184, 77440,
77696, 77952, 78208, 78464, 78720, 78976, 79232, 79488, 79744, 80000, 80256.
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are centered in the middle of a pixel while those observations with the least stel-
lar flux are centered on a pixel corner. This effect, shown graphically in Fig.
5.1 of the IRAC Data Handbook, is due to the combination of large quantum
efficiency variations within individual pixels and the undersampling of the PSF
by the DRF, is most severe in Channel 1 (3.6 µm) where the correction can be
as much as 4% peak to peak (Reach et al. 2006).

4. Circular Aperture Photometry

Circular aperture photometry centered on the star with a radius of 10 pixels was
done using the interactive “a” keyboard command of IRAFs imexamine task. A
5.3% peak-to-peak spread was seen in the raw circular aperture flux measure-
ments. Applying the recommended Ch1 flux correction from the IRAC Data
Handbook (Reach et al. 2006) only slightly reduces the peak-to-peak spread to
4.9%. Reducing the aperture radius to just 5 pixels does improves the photomet-
ric precision; a 4.5% peak-to-peak spread was seen in the raw circular aperture
flux measurements which reduces to 3.5% when the recommended Ch1 flux cor-
rection was applied. This is the best that aperture photometry can do with
these observations.

5. MATPHOT Photometry

MATPHOT PSF-fitting photometry was performed on all of the observations us-
ing MPDZ with a theoretical 5×5 supersampled IRAC Ch1 PSF kindly provided
by IRAC team member B. Hoffmann (see Hoffmann 2005b). The raw measured
stellar flux values reported by MPDZ had a 5.2% peak-to-peak spread. However,
when those flux values are combined with the sum of all of the residuals (positive
and negative differences between the data and the best-fit model) within a radius
of 5 pixels from the fitted center of the star, then the photometry has a 1.7%
peak-to-peak spread—an improvement in photometric precision of more than
100% over the best results obtained with aperture photometry (see left graph of
Figure 1). This experiment has demonstrated that even if the recorded flux of
point sources is corrupted by using lossy detectors with large intrapixel quan-
tum efficiency variations, it is practical to significantly improve the precision of
stellar photometry from observations made with such detectors by accurately
modeling the image formation process within the detector.

A very interesting finding of this experiment is that simple aperture pho-
tometry of stellar observations obtained with IRAC Ch1 can be significantly im-
proved by simply dividing the measured aperture flux with the MPDZ-computed
volume of the Point Response Function (PRF) which is the convolution of the
PSF with the discrete DRF. When the best uncorrected circular aperture flux
values were divided by the volume of the best-fit PRF computed by MPDZ,
the photometric precision improved from the 4.5% peak-to-peak value (reported
above) to just 1.9% (see right graph of Figure 1) which is just slightly worse
than the 1.7% spread result from MPDZ with residuals. This suggests that
aperture photometry from IRAC Ch1 observations could probably be signifi-
cantly improved by using a two-dimensional correction function instead of using
the radial correction function currently recommended in the IRAC Data Hand-
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Figure 1. MATPHOT (MPDZ) photometry with residuals versus cir-
cular aperture photometry with a radius of 5 pixels.

book. The derivation of that two-dimensional correction function would require
a detailed analysis of a large number of dithered IRAC Ch1 unsaturated stellar
observations.
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Square Aperture Photometry
Square aperture photometry with a 21 × 21 pixel box centered on
the star was done using the interactive “m” keyboard command of
IRAF’s imexamine task. Fig. 1 shows a 5.6% peak-to-peak spread
was seen in these square aperture flux measurements. A non-
random variation in flux is quite apparent in these 16 IRAC Ch1
observations: the total stellar flux measured is strongly correlated
with the amount of flux found in the central pixel.

     Figure 1. Square aperture photometry (21x21 pixels).

Examination of the individual observations revealed that the
observations with the most stellar flux have stellar images that are
centered in the middle of a pixel while those observations with the
least stellar flux are centered on a pixel corner.

This effect, shown graphically in Fig. 5.1 of the IRAC Data
Handbook (see Fig. 2), is due to the  combination of large quantum
efficiency variations within individual pixels and the
undersampling of the Point Spread Function by the Detector
Response Function, is most severe in Channel 1 (3.6 µm) where the
correction can be as much as 4% peak to peak (Reach et al. 2006).

    Figure 2. Normalized measured flux density (y-axis) is plotted
    against the distance of the source centroid from the center of a
    pixel (source: Fig. 5.1 of the IRAC Data Handbook).

The Lost Flux Method: A New Algorithm for Improving the Precision of
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ABSTRACT
The combination of undersampling stellar images with
detectors that have non-uniform pixel response
functions is currently diminishing the science return of
some near-infrared imagers onboard the Hubble Space
Telescope and the Spitzer Space Telescope. Although
the recorded flux of point sources may vary
significantly by using detectors with large effective
intrapixel quantum efficiency variations, it is still
possible to achieve excellent stellar photometry -- if the
image formation process inside the detector is
accurately modeled. A new analysis technique called
the Lost Flux Method is described and used to
demonstrate how the precision of stellar photometry
from an existing space-based near-infrared camera
with a lossy detector can be significantly improved. A
detailed analysis of multiple observations of a single
bright isolated star obtained with Channel 1 of the
Spitzer Space Telescope Infrared Array Camera
(IRAC) instrument yields an improvement in
photometric precision of more than 100% over the best
results obtained with aperture photometry.

Observations and Photometric Reductions
Sixteen short (0.4 s) calibration observations of the K0-class star
PPM 9412 (a.k.a. HIP 6378) were obtained on 2003 October 8 UT
with Channel 1 (3.6 µm) of the Infrared Array Camera (IRAC;
Fazio et al. 2004) onboard the Spitzer Space Telescope. The IRAC
basic calibrated data (BCD) images were retrieved from the Spitzer
data archive with the kind assistance of IRAC team member Bill
Glaccum. These observations were analyzed with the imexamine
task of NOAO's IRAF package and a new experimental version of
MATPHOT (Mighell 2005), called MPDZ (Mighell 2006,) which
uses the following relative intrapixel quantum efficiency (QE)
variation map for IRAC Channel 1 (Ch1),

(Hoffmann 2005a), and a theoretical IRAC Ch1 PSF for the central
region of IRAC Ch1 (Hoffmann 2005b). MATPHOT models the
image formation process within the detector by convolving the PSF
(PSF) with the discrete Detector Response Function (DRF) which, in
this case, is based on the relative intrapixel QE map given above.
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MATPHOT Photometry
MATPHOT PSF-fitting photometry was performed on all of the
observations using MPDZ with a theoretical 5×5 supersampled
IRAC Ch1 PSF kindly provided by IRAC team member Bill
Hoffmann (see Hoffmann 2005b). The raw measured stellar flux
values reported by MPDZ had a 5.2% peak-to-peak spread.

     Figure 3. MATPHOT (MPDZ) photometry.

However, when those flux values are combined with the sum of all
of the residuals (positive and negative differences between the data
and the best-fit model) within a radius of 5 pixels from the fitted
center of the star, then the photometry has a 1.7% peak-to-peak
spread (see left graph of Fig. 3) —an improvement in photometric
precision of more than 100% over the best results obtained with
circular aperture photometry (see left graph of Fig. 4). This
experiment has demonstrated that even if the recorded flux of
point sources is corrupted by using lossy detectors with large
intrapixel quantum efficiency variations, it is practical to
significantly improve the precision of stellar photometry from
observations made with such detectors by accurately modeling the
image formation process within the detector.

A very interesting finding of this experiment is that simple
aperture photometry of stellar observations obtained with IRAC
Ch1 can be significantly improved by simply dividing the raw
measured aperture flux with the MPDZ-computed volume of the
Point Response Function (PRF) which is the convolution of the
PSF with the discrete DRF. When the best uncorrected circular
aperture flux values were divided by the volume of the best-fit
PRF computed by MPDZ, the photometric precision improved
from the 4.5% peak-to-peak value to just 1.9% (see right graph of
Fig. 4) which is just slightly worse than the 1.7% spread result
from MPDZ with residuals. This suggests that aperture
photometry from IRAC Ch1 observations could probably be
significantly improved by using a two-dimensional correction
function instead of using the radial correction function currently
recommended in the IRAC Data Handbook.  The derivation of
that two-dimensional correction function would require a detailed
analysis of a large number of dithered IRAC Ch1 unsaturated
stellar observations.

     Figure 4. MATPHOT (MPDZ) photometry with residuals
     versus circular aperture photometry with a radius of 5 pixels.

  

Circular Aperture Photometry
Circular aperture photometry centered on the star with a radius of
10 pixels was done using the interactive “a” keyboard command of
IRAF’s imexamine task. A 5.3% peak-to-peak spread was seen in
the raw circular aperture flux measurements. Applying the
recommended Ch1 flux correction from the IRAC Data Handbook
(Reach et al. 2006) only slightly reduces the peak-to-peak spread to
4.9%.  Reducing the aperture radius to just 5 pixels does improves
the photometric precision; a 4.5% peak-to-peak spread was seen in
the raw circular aperture flux measurements which reduces to
3.5% when the recommended Ch1 flux correction was applied.
This is the best that aperture photometry can do with these
observations.
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Abstract 
 

In this case study, various ways to partition a code 
between the microprocessor and FPGA are examined.  
Discrete image convolution operation with separable 
kernel is used as the case study problem and SRC-6 
MAPstation is used as the test platform.  The overall 
execution time of the resulting implementation serves 
as the primary optimization criterion.  The paper 
presents an overview of the SRC-6 architecture and 
programming tools and describes the case study 
problem, along with a timing analysis of its 
microprocessor-based implementation.  Next, three 
code partitioning schemes are considered and their 
SRC-6 MAP implementations are described, including 
detailed timing analyses.  The results are compared 
and conclusions are drawn as to what partitioning 
scheme characteristics contribute most to the 
reduction of the overall execution time of the 
algorithm.  The results of this case study are 
applicable to a large class of problems that involve 
outsourcing computationally demanding tasks to a 
reconfigurable processor. 
 
1. Introduction 
 

Reconfigurable computing (RC) [1] based on field 
programmable gate array (FPGA) technology has the 
potential to yield performance improvements beyond 
those predicted by Moore’s Law [2].  Recently 
introduced commercial high-performance 
reconfigurable computing (HPRC) systems, such as 
Cray XD1, SGI RASC, and SRC-6 MAP™, which are 
based on the combination of conventional processors 
and FPGAs, enable software developers to exploit 
coarse-grain functional parallelism through 
conventional parallel processing as well as fine-grain 
parallelism through direct hardware execution on 
FPGAs.  One of the key challenges in effectively using 

these systems is the need for manual partitioning of the 
algorithm between the microprocessor(s) and 
FPGA(s).  How to partition the code such that the best 
overall application performance can be achieved is a 
fundamental research question.  While some work has 
been done on automatic code partitioning [3-5], none 
of the obtained results have been implemented on the 
current production systems, such as SRC-6 MAP.  It is 
up to the software developer to analyze the code and 
decide what should be ported to the FPGA and what 
should be left on the microprocessor.   

Some well-understood common metrics, such as the 
number of operations and results per data unit, data 
reuse efficiency, data per latency, etc. [6], can be 
useful to guide the partitioning process.  Yet there are 
other practical considerations, such as the number of 
times the FPGA function is called, the number of times 
the direct memory access (DMA) engine is invoked, 
and microprocessor data manipulation tasks, that may 
have an adverse effect on the overall algorithm 
performance.  The goal of this case study is to examine 
what impact different code partitioning schemes, 
which are similar in the common metrics space [6] but 
differ in other ways, have on the overall algorithm 
performance. 

The case study is based on an example of an image 
convolution algorithm that uses a separable 
convolution kernel.  This particular algorithm enables 
us to consider three levels of code partitioning 
granularity.  At the lowest level, only the core 
computational kernel is outsourced to the FPGA and 
the microprocessor is left to deal with the memory 
manipulation tasks.  At the intermediate level, the 
algorithm is partitioned along the lines of two major 
computational tasks.  And at the highest level, the 
entire algorithm is ported to the FPGA.  These code 
partitioning schemes demonstrate the impact of 
different levels of partitioning granularity on the 
overall code performance and the FPGA code 
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complexity.  The observations made in the paper are 
intended to serve as the guidelines that one might refer 
to when considering porting code to an RC platform. 

SRC-6 MAP [7] was used in this case study as the 
target platform because it is one the most readily 
available production RC systems on the market.  The 
development toolset, called Carte [8], also provides a 
clear path for code development on the FPGA as well 
as a convenient debugging and simulation 
environment. 
 
2. Case study problem 
 

The MATPHOT code [9] used in stellar photometry 
and astrometry is the application driver for this work.  
The core of the code is a discrete convolution 
operation that convolves a synthetic image with a 21 
coefficient-wide damped sinc function, 
sinc(x)=sin(πx)/πx, using a separable kernel.  In 
MATPHOT, single precision floating point numerical 
resolution is required for both the synthetic image and 
damped sinc function. 

The basic idea of image convolution is that a 
window of some finite size and shape, h[k,l], is 
scanned across the image and the output pixel value is 
computed as the weighted sum of the input pixels, 
a[m,n], where the weights are the values of the filter 
assigned to every pixel of the window: 
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The window with its weights is called the convolution 
kernel.  The per-pixel computational complexity for a 
KxL convolution kernel is O(KL). 

If the convolution kernel h[k,l] is separable, that is, 
if the kernel can be written as 
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then the convolution can be performed as follows: 
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Thus, instead of applying one two-dimensional 

convolution kernel, it is possible to apply two one-
dimensional kernels: the first one in the l direction and 
the second one in the k direction.  This reduces the per-
pixel computational complexity to O(K+L). 

Microcomputer implementation of the last equation 
is straightforward: For an MxN image, a[m,n], a one-
dimensional convolution with hrow[l] kernel is 
performed for each row of pixels followed by a 
convolution with hcol[k] kernel for each column: 

 
2DCONVOLUTION(A, B, M, N, Hr, Hc, L, K) 
1 for m ← 0 to M-1 
2  for n ← 0 to N-1 
3   R1[n] ← A[m, n] 
4  R2 ← 1DCONVOLUTION(R1, N, Hr, L) 
5  for n ← 0 to N-1 
6   B[m, n] ← R2[n] 
7 end 
8 for n ← 0 to N-1 
9  for m ← 0 to M-1 
10   C1[m] ← B[m, n] 
11  C2 ← 1DCONVOLUTION(C1, M, Hc, K) 
12  for m ← 0 to M-1 
13   B[m, n] ← C2[m] 
14 end 
15 return B 

 
Here A denotes input image, B denotes output 

image, both of dimension MxN, Hr denotes the 
convolution kernel (consisting of L elements) applied 
to each row, and Hc denotes the convolution kernel 
(consisting of K elements) applied to each column.  
Lines 1-7 correspond to per-row convolution: Pixels 
from each row are copied to a separate array (lines 2-
3), R1, a one-dimensional convolution with the 
appropriate coefficients is performed on R1 (line 4), 
and the results are copied to the destination image B 
(lines 5-6), which is then processed in a similar manner 
for each column (lines 8-14).  Finally, the following is 
the 1DCONVOLUTION subroutine: 
 
1DCONVOLUTION(I, O, P, H, Q) 
1 for p ← 0 to P-1 
2  O[p] ← 0 
3  for q ← 0 to Q-1 
4   O[p] ← O[p] + I[p+q] · H[q] 
5 end 
6 return O 
 
The 2DCONVOLUTION algorithm is the subject of 
the present study.  Its computational complexity is 
O((K+L)MN); thus, for a fixed-size convolution kernel 
the overall execution time of the algorithm is the 
function of image size. 
 
3. Case study platform 
 

The SRC-6 MAPstation [7] used in the course of 
this study consists of a commodity dual-CPU Xeon 
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board, a MAP Series C processor, and an 8 GB 
common memory module, all interconnected with a 1.4 
GB/s low-latency switch.  The SNAP™ Series B 
interface board is used to connect the CPU board to the 
Hi-Bar switch.  The SNAP plugs directly into the 
mother board’s DIMM memory slot. 

The MAP Series C processor module contains two 
user FPGAs, one control FPGA, and memory.  There 
are six banks (A-F) of on-board memory (OBM); each 
bank is 64 bits wide and 4 MB deep for a total of 24 
MB.  The programmer is responsible for data transfer 
to and from these memory banks via SRC 
programming macros invoked from the FPGA 
application.  There is an additional 4 MB of dual-
ported memory dedicated solely to data transfer 
between the two FPGAs. 

The two user FPGAs in the MAP Series C are 
Xilinx Virtex-II XC2V6000 FPGAs.  Each FPGA 
contains 6 million equivalent logic gates, 144 
dedicated 18x18 integer multipliers, and 324 KB of 
internal dual-ported block RAM (BRAM).  These 
FPGA elements are not directly visible to the 
programmer but are interconnected appropriately as 
determined by the programmer’s MAP C algorithm 
code, the SRC Carte programming environment tools, 
and the Xilinx FPGA place and route tools.  The 
FPGA clock rate of 100 MHz is set by the SRC 
programming environment. 

The Carte programming environment [8] for the 
SRC MAPstation is highly integrated, and all 
compilation targets are generated via a single makefile.  
The two main targets of the makefile are a debug 
version of the entire program and the combined 
microprocessor code and FPGA hardware 
programming files.  The debug version is useful for 
code testing before the final time-intensive hardware 
place and route step.  Either the Intel icc compiler or 
the gcc compiler can be used to generate both the 
CPU-only debug executable and the CPU-side of the 
combined CPU/MAP executable.  The SRC MAP 
compiler is invoked by the makefile to produce the 
hardware description of the FPGA design for final 
combined CPU/MAP target executable.  This 
intermediate hardware description of the FPGA design 
is passed to the Xilinx ISE place and route tools, which 
produces the FPGA bit file.  Lastly, the linker is 
invoked to combine the CPU code and the FPGA 
hardware bit file(s) into a unified executable. 
 
4. Code partitioning alternatives 
 

The core of the computation is a fixed-width 21-
coefficient 1D convolution operation that uses single 

precision floating point arithmetic.  XC2V6000 FPGA 
has enough hardware multipliers to implement just two 
such 21-coefficient-wide fully unrolled operations (42 
single precision floating point multiplications and 40 
additions in total) using SRC’s reduced space multiply 
macros.  Therefore, our ability to perform 
simultaneous convolution operations is limited by the 
available FPGA hardware resources to just two such 
operations. 

Considering the overall execution time of the 
algorithm as the main efficiency criteria, and taking 
into account availability of FPGA resources, what is 
the most efficient way to partition the 
2DCONVOLUTION algorithm between the 
microprocessor and MAP processor? 

To answer this question, we examine several 
partitioning options and investigate their run-time 
behavior.  Perhaps the simplest partitioning approach 
is to outsource the 1DCONVOLUTION algorithm 
alone.  Alternatively, the entire convolution operation 
in one dimension can be implemented on MAP.  And 
finally, the entire 2DCONVOLUTION algorithm can 
be ported to MAP.  Note that these partitioning 
alternatives result in the same number of calculations 
to be performed on MAP, thus, they are similar in the 
sense of the common metrics used in [6] (with the 
exception of data reuse efficiency), yet they are very 
different as far as the number of times the MAP 
subroutine is called and the type and amount of 
memory manipulations with which the microprocessor 
is left. 
 
4.1. Code partitioning choice # 1 
 

It is natural to consider a partitioning scheme in 
which the 1DCONVOLUTION subroutine alone is 
outsourced to the MAP processor.  An obvious 
advantage of this approach is its simplicity: One is 
concerned with only one row or column of image 
pixels at a time without explicitly distinguishing 
between them, which simplifies the data management 
aspects of MAP code implementation.  The main 
disadvantage of this approach, of course, is the need to 
call the MAP-based 1DCONVOLUTION function 
multiple times, thus likely encountering some MAP 
function call overhead that may have an effect on the 
overall performance. 

Porting 1DCONVOLUTION to MAP is 
straightforward.  There is enough space and hardware 
multipliers on the MAP’s primary FPGA chip to 
perform two sets of convolution calculations in parallel 
using SRC’s floating point single precision smaller 
area macros.  Therefore, the overall MAP code 
sequence deployed on just one chip is: 
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• If run the first time, DMA from main RAM 
convolution coefficients to OBM bank F 

• Copy convolution coefficients from OBM bank F 
to on-chip registers 

• DMA from the RAM pixel values to OBM bank A 
• Do calculations using pixels from OBM bank A 

and storing results in OBM bank B 
o Bring in the next two pixel values from OBM 

bank A to the on-chip pixel registers 
o Shift the on-chip pixel registers by two pixels 
o Perform two parallel convolution calculations 
o Store two results in OBM bank B 

• DMA to main RAM results from OBM bank B 
 

The mapped and routed FPGA implementation of 
the 1DCONVOLUTION subroutine occupies all 
available SLICEs and 91% of all available 
MULT18X18s on one MAP Series C processor’s 
FPGA and meets timing requirements of 9.998 ns. 
 
4.2. Code partitioning choice # 2 
 

The next partitioning scheme is based on the 
observation that in the CPU implementation the entire 
image is located in a continuous memory array, one 
row of pixels after another.  Therefore, it is 
straightforward to have access to the consecutive rows 
of image pixels without copying them to a separate 
array.  Thus, the per-row convolution calculations for 
the entire image can be outsourced to MAP, literally 
by replacing lines 1-7 in the 2DCONVOLUTION 
algorithm with just one call to a MAP-based 
subroutine.  Once all rows of the image are processed, 
the image data must be rearranged in the memory so 
that the columns occupy a continuous memory array, 
one column of pixels after another.  Then the same 
MAP subroutine can be called on the rearranged image 
with the net effect of performing per-column 
convolution calculations.  At the end, the pixels are 
moved back to their original locations.  The overall 
MAP code sequence for this implementation is: 
 
• DMA in convolution coefficients to OBM bank F 
• Copy convolution coefficients from OBM bank F 

to on-chip registers 
• For each row of image pixels 

o DMA in pixel values to OBM bank A 
o Do calculations using pixels from OBM bank 

A and storing results in OBM bank B 
o DMA out results from OBM bank B 

 
Conceptually, the MAP subroutine of this 

implementation is very similar to the previous 

implementation; we just augmented the previously 
written code with an extra loop responsible for 
bringing in and out the next row/column of data rather 
than leaving this to the microprocessor.  The 
microprocessor code now is left with the extra work 
needed to rearrange the image data in memory. 

This implementation occupies all available SLICEs, 
some of which are packed with unrelated logic, and 
95% of all available MULT18X18s on one MAP 
Series C processor’s FPGA and meets timing 
requirements of 9.994 ns. 
 
4.3. Code partitioning choice # 3 
 

In this partitioning scheme, the entire 
2DCONVOLUTION algorithm is ported to MAP.  
However, there are some difficulties with 
implementing this approach in practice.  Note that the 
previous design occupied all available SLICEs on the 
MAP Series C processor’s FPGA, some of which were 
already packed with unrelated logic.  Therefore, the 
primary FPGA is used to implement the calculations in 
one image dimension and the secondary FPGA is used 
to implement the calculations in the other image 
dimension.  The intermediate image is stored in the on-
board memory, which limits the size of the image that 
can be processed by this implementation to 12 MB.  
The primary FPGA MAP code sequence is: 

 
• DMA in one set of convolution coefficients to 

OBM bank E 
• DMA in the other set of convolution coefficients 

to OBM bank F 
• Copy convolution coefficients from OBM bank F 

to on-chip registers 
• DMA in input image to OBM banks A-C 
• For each row of image pixels 

o Do calculations using pixel values from OBM 
banks A, B, and C and storing results in OBM 
banks D, E, and F 

• Let other chip to do per-column calculations 
• DMA out results from OBM banks A-C 

 
The FPGA chips on the MAP processor operate in a 

master-slave mode.  The secondary chip waits until the 
primary chip is done with the per-row calculations and 
only then performs per-column calculations.  The 
secondary FPGA MAP code sequence is: 

 
• Copy convolution coefficients from OBM bank E 

to on-chip registers 
• Wait until the primary chip is done with per-row 

calculations 
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• For each column of image pixels 
o Do calculations using pixel values from OBM 

banks D, E, and F and storing results in OBM 
banks A, B, and C 

 
This implementation occupies all available SLICEs 

and over 95% of MULT18X18s on both chips and 
meets timing requirements of 9.995 ns.  However, it 
took some effort to fine-tune the secondary FPGA 
design to fit on the chip and meet timing requirements. 
 
5. Implementation results and discussion 
 

Let us first examine the original microprocessor-
only implementation described in Section 2.  Figure 1 
shows how the overall execution time changes as the 
image size increases.  It also shows what fraction of 
time is spent due to memory copy operations (lines 2-
3, 5-6, 9-10, 12-13 of the 2DCONVOLUTION 
algorithm) and due to the actual calculations (lines 4 
and 11).  Thus, for a 2,048x2,048 pixel image, memory 
copy operations are responsible for about 0.72 
seconds, whereas actual convolution calculations take 
about 0.62 seconds.  (Calculations reported in this 
paper were performed on a 2.8 GHz Intel dual-Xeon 
platform; code was compiled with the gcc 3.4.3 
compiler using the O3 optimization level.  The 
microprocessor “Read Time Stamp Counter” 
instruction (RDTSC) [10] was used to measure timing 
information.) 
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Figure 1.  Time to compute vs. image size for 
2DCONVOLUTION algorithm.  The horizontal axis 
shows image dimensions, thus “512” means an image 
consisting of 512x512 pixels. 
 

Figure 2 provides test results for the first 
partitioning scheme implemented as described in 
Section 4.1.  As with the microprocessor-only 
implementation, a significant amount of time is spent 

due to the memory copy operations, whereas time 
spent performing actual calculations is only marginally 
smaller than in the native CPU-only implementation.  
Note that ‘MAP code execution’ time includes both 
data transfer and convolution calculations time.  
However, an even larger amount of time is now spent 
due to the MAP function call overhead.  We measure 
this overhead as the difference between the time spent 
on the CPU while executing the MAP function and the 
time measured inside the MAP function while 
executing its internals (including data transfer) on the 
FPGA.  In other words, MAP function call overhead is 
what it takes to call an “empty” MAP function that 
returns immediately without any work done. 
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Figure 2.  Execution time for 2DCONVOLUTION 
algorithm in which 1DCONVOLUTION subroutine 
alone is ported to MAP. 
 

Figure 3 provides test results for the second 
partitioning scheme implementation described in 
Section 4.2.  The MAP function call overhead, which 
was a major issue with the previous code partitioning 
scheme, is now independent of the image size (since 
the MAP function is called only twice) and became 
much smaller.  The MAP code execution time 
increased as compared to the previous implementation.  
However, the amount of time spent due to the memory 
copy operations on the CPU remains about the same as 
with our previous implementation, even though each 
pixel value is copied only twice, whereas in the 
previous implementation it was copied four times, 
although in smaller memory segments.  This is likely 
due to the CPU memory cache misses. 

Note that the actual calculation time of the MAP 
implementation can still be reduced if we involve the 
second FPGA chip available on the MAP Series C 
processor.  But even this will not reduce the overall 
algorithm execution time with any significance since 
the time spent due to the image rearrangement on the 



 6

CPU accounts for the majority of the execution time.  
The need to “rotate” the image twice in the system 
memory resulted in a significant time overhead. 
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Figure 3.  Execution time for 2DCONVOLUTION 
algorithm in which the entire convolution operation in 
one image dimension is outsourced to MAP. 

 
Figure 4 provides test results for the third 

partitioning scheme implemented as described in 
Section 4.3.  In this implementation, all the 
microprocessor-side calculations and memory 
manipulations have been eliminated.  The MAP 
subroutine is called only once, therefore the MAP 
function call overhead remains small and independent 
of the image size.  This overhead, however, is doubled 
as compared to the previous implementation due to the 
fact that now both FPGA chips are used.  On the other 
hand, the actual calculation time measured on the MAP 
decreased significantly since the DMA engine is 
invoked from the FPGA design only twice, once to 
transfer in the entire image and once to transfer out.  
(Remember that in the previous implementation the 
DMA engine was invoked twice per each image 
row/column.)  Thus, for an image consisting of 
1,772x1,772 pixels, we achieved a 3x overall code 
execution speedup. 

Figure 5 shows a combined comparison chart of the 
execution time for all four implementations.  It is clear 
that the first code partitioning scheme suffers due to 
the MAP function call overhead.  Even though this 
partitioning scheme is intuitive and simple to 
implement, it increases the overall execution time 
because the MAP function is called frequently and thus 
the accumulated MAP function call overhead adds up 
quickly to the overall execution time. 

The second code partitioning scheme suffers due to 
the need to perform costly memory manipulations on 
the microprocessor and also due to the need to invoke 
the DMA data transfer engine multiple times. 

The third code partitioning scheme eliminates the 
need for any memory manipulations on the 
microprocessor side.  It also eliminates the need for the 
frequent use of the DMA data transfer engine as the 
entire image data is transferred in and out only once.  
As a result, the MAP code execution time is very short 
and the overall execution time is dominated by the 
MAP function call overhead. 
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Figure 4.  Execution time as a function of image size 
for 2DCONVOLUTION algorithm implemented solely 
on MAP.  Note the vertical axis scale difference 
between this figure and Figures 1- 3.  Also note that 
the largest image that can be processed by this 
implementation is 1,772x1,772 pixels. 
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Figure 5.  Execution time comparison chart for a 
1,024x1,024 pixels image. 

 
The 2DCONVOLUTION algorithm is an 

interesting case to study since the best way to partition 
it is not immediately clear based on the run-time 
analysis of the algorithm shown in Figure 1.  It is 
tempting to port the 1DCONVOLUTION algorithm 
alone since it is responsible for about half of the 
overall execution time.  Yet this resulted in a 
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significant MAP function call overhead that increased 
the overall execution time (Figure 2).  Porting the 
entire 2DCONVOLUTION algorithm presents some 
challenges since it requires both MAP FPGAs to be 
utilized at their full capacity, thus making it difficult to 
meet timing requirements.  Yet this approach yields the 
best overall performance. 
 
6. Conclusions and future work 
 

All three partitioning schemes presented in this 
paper resulted in the same number of calculations 
executed on the FPGA when combined across a single 
run of the 2DCONVOLUTION algorithm.  Yet they 
resulted in very different execution times.  This points 
out the importance of the overall code organization for 
reconfigurable system applications.  The MAP 
function should be called as few times as possible in 
order to eliminate the MAP function call overhead.  A 
partitioning scheme that reduces or eliminates the need 
for data manipulations by the microprocessor should 
be considered.  The DMA engine should be invoked in 
the MAP code as few times as possible since it adds 
considerable overhead to the MAP code execution.  
Thus, when considering different code partitioning 
alternatives, in addition to the metrics based on various 
aspects of data reuse such as those reported in [6], one 
should also take into account other practical 
considerations, such as the number of times the MAP 
code will be invoked, amount if extra memory 
manipulation tasks left to the microprocessor, etc. 

We have not seen MAP function call overhead 
timing measurements reported in the literature and our 
own estimates vary.  For example, combined MAP 
function call overhead for the design described in 
Section 4.2 is 0.068 seconds, whereas the overhead for 
the design provided in Section 4.3 is 0.135 seconds.  In 
the first case, only one FPGA chip was used and the 
MAP function was called twice.  In the second case, 
both FPGAs were used, but the MAP subroutine was 
called only once.  Our estimates show that the first 
time a MAP subroutine is called it encounters a 67 
millisecond overhead due to the need to load the 
FPGA configuration bitfile.  Each consecutive call to 
the same MAP function resulted in an overhead that 
varied for different designs.  The nature of this 
variability and the ways it can be precisely measured 
and/or predicted is the subject of the future work. 
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